
The EYEDB OODBMS

Eric Viara
Sysra Informatique
7, rue de Bièvres

92140 Clamart, France
viara@sysra.com

Emmanuel Barillot
GIS Infobiogen

7, rue Guy Môquet – BP 8
94801 Villejuif cedex, France

and
Généthon

1bis, rue de l’Internationale
91000 Évry, France

emmanuel.barillot@infobiogen.fr

Guy Vaysseix
GIS Infobiogen

and
Généthon

vaysseix@infobiogen.fr

Abstract

This paper introduces the EYEDB Object Oriented
DataBase Management System (OODBMS). EYEDB im-
plements all the standard features of OODBMS, is language
oriented, provides a generic object model and a support for
data distribution using CORBA. It can deal with very large
databases, and is both efficient and scalable. It is used in
the genome project where huge amount of data have to be
managed and intricate data structures needs to be modeled.
Online information and a trial version of EYEDB can be
obtained from http://www.sysra.com/eyedb.

1. Introduction

The development of EYEDB was initiated in 1993
at Généthon to store and facilitate access to the human
genome mapping data (physical and genetic maps). At that
time, EYEDB was intended as a persistent OO system,
that was very light and much more efficient for storage
and retrieval than the other OODBMS. From 1994, Sysra
Informatique has rewritten completely EYEDB and made it
a real OODBMS.

The key features of the EYEDB OODBMS are:

• standard OODBMS features [4, 18, 14]: persistent
typed data management; client/server model; trans-
actional services; recovery system; expressive object
model; inheritance; integrity constraints; methods;
triggers; query language; application programming in-
terfaces,

• language orientation: a definition language based on
the ODMG [11] Object Definition Language (ODL);
a query language based on the ODMG Object Query
Language (OQL); C++ and Java bindings,

• genericity and orthogonality of the object model:
inspired by the SmallTalk, LOOPS, Java and ObjVlisp
object models (i.e. every class derives from the class
object and can be manipulated as an object); type
polymorphism; binary relationships; literal and ob-
ject types; transient and persistent objects; method and
trigger overloading; template-based collections (set,
bag and array); multi-dimensional and variable size di-
mensional arrays,

• support for data distribution: CORBA binding;
multi-database objects,

• support for large databases: databases up to several
Tb (tera-bytes),

• efficiency: database objects are directly mapped
within the virtual memory space; object memory copy
are reduced to the minimum; clever caching policies
are implemented,

• scalability: programs are able to deal with hundred of
millions of objects without loss of performance.

The system architecture is briefly exposed in section 2. Sec-
tion 3 introduces the storage manager subsystem. In section
4, the object model is exposed. Sections 5 and 6 describe
the EYEDB object definition language and query language.
Sections 7, 8 and 9 deal with the C++, Java and Corba bind-
ings. In section 10, we present briefly some applications



using EYEDB in the biological domain. A few compari-
son elements between EYEDB and the other OODBMS are
exposed in section 11.

2. The Architecture

EYEDB is based on a client/server architecture as shown
in Figure 1.

The EYEDB server is composed of:

• the server protocol layer based on Remote Procedure
Call (RPC),

• the object model implementation,

• the OQL engine,

• the storage manager subsystem.

A client is composed of:

• the user application code,

• the C++ (resp. Java) API implementing the C++ (resp.
Java) binding,

• the client protocol layer based on RPC.

3. The Storage Manager Subsystem

The storage manager subsystem provides the following
main services:

- persistent raw data management,
- transactional services,
- recovery system,
- B-tree and hash indexes,
- multi-volume database management.

The storage manager can be used independently from
EYEDB.

3.1. Persistent Raw Data Management

The central concept of the storage manager is the raw
object. A raw object is a piece of persistent raw data tied to
an object identifier named oid .
An oid identifies a raw object in a unique way within a set
of databases. It is generated by the storage manager at raw
object creation.
An oid is composed of three fields: the storage index, the
database identifier and a random generated magic number.
The first field identifies the object physical location within
a database volume. The second one identifies a database

and the last one ensures more security in the object identi-
fication process.

The storage manager is responsible for the management of
raw objects:

• raw object creation (storage allocation, oid allocation,
object storage),

• raw object update (content modification),

• raw object reading,

• raw object deleting (oid deallocation, storage deallo-
cation),

• raw object resizing (storage reallocation, object mov-
ing),

• raw object locking and unlocking (shared locking, ex-
clusive locking, private locking),

• raw object access control

3.2. Memory Mapped Architecture

The storage manager is based on a memory mapped
architecture. Database volumes are mapped within the
server virtual memory space.
Due to some 32-bit system limitations, the databases
greater than 2Gb cannot be mapped as a whole.

The storage manager implements a segment-based mapping
algorithm: when reading an object, the storage manager
checks if the corresponding storage piece is mapped within
its virtual memory space. If it is not mapped, it maps a
large segment of data around the raw object, eventually
extending a neighboring segment.
If the total mapped size is more than the system maximum,
it unmaps the less recently used mapped segment. On
64-bit system, this algorithm is not needed as databases up
to several Tb (i.e. tera-bytes) can be mapped at the whole
within the virtual memory space.
Currently, the storage manager can deal with databases up
to one Tb.

3.3. Transactional Services

The storage manager provides standard transaction ser-
vices which guarantees atomicity, consistency, isolation and
integrity within a database.
Its transaction unit is based on a two-phase locking proto-
col. The protocol requires that each transaction issues lock
and unlock requests in two phases:

• growing phase: a transaction may obtain locks but may
not release any lock.



RPC Layer

OQL Engine

RPC Layer

Java API

TCP/IP

Client Client

Databases

C++ API

RPC Layer

Application Code Application Code

Memory Mapped Storage Manager

Server

Concurrence

O
bj

ec
t

L
ay

er
St

or
ag

e
M

an
ag

er

Implementation
Object Model

Method Dynamic Loader

Transaction
ServicesServices
IndexRecovery

System

Figure 1. The EYEDB Architecture

• shrinking phase: a transaction may release locks but
may not obtain any new lock.

Initially, a transaction is in the growing phase. The
transaction acquires locks as needed. Once the transaction
releases a lock, it enters the shrinking phase and no more
lock requests may be issued.

The storage manager provides different transaction
locking modes: read and write shared, read shared and
write exclusive, read and write exclusive or database
exclusive.
It also provides immediate deadlock detection.

3.4. The Recovery System

The storage manager provides a simple but efficient re-
covery system against failures:

• client failure: the transaction is automatically aborted
by the server.

• server failure or operating system failure: the current
transactions will be automatically aborted on the next
database opening.

• the disk failure recovery is not supported: this is a de-
liberate choice of simplicity since storage consistency
can rely on the RAID technology or transactional file
systems now available on modern operating systems.

3.5. B-Tree and Hash Indexes

The storage manager provides support for B-Tree and
Hash indexes.
The B-Tree index provides fixed size raw data indexation,
efficient exact match query and range query.

The Hash index provides variable size raw data indexation
and efficient exact match query. The hash key function can
be provided by the client.

3.6. Multi-Volume Database Management

The database storage unit is the volume file. A database
can contains up to 512 volumes each one up to 2Gb on a
32-bit file system interface, or up to several tera-bytes on a
64-bit file system interface. The storage manager provides
facilities to add, move, resize and reorganize database vol-
umes.

4. The Object Model

The EYEDB object model is inspired by the SmallTalk,
LOOPS, ObjVlisp, Java and ODMG [11] models.

The main three class abstractions are the class ob-
ject which is the root class, the class class and the
class instance as shown in Figure 2.

An instance cannot be instantiated except the instances
of the class class or the instances of the classes which
inherit from the class class : the instantiation of an
instance of the class class is an instance of the class
instance .

If new() denotes the instantiation method:

struct class Person =
struct class ->new(name = ”Person”, ...)

Person is an instance of the class struct class .
It is also a class that inherits from the class struct .



Class Class
Agregat
Class Enum Agregat

Instance

StructUnionClass
Struct

Class
Union

Class

Object

Collection CollectionEnum

inheritance

Figure 2. Partial Native Object Model

Person can be instantiated as follows:

struct john =
Person->new(name = ”john”, age = 32)

john is an instance of the class struct that cannot
be instantiated

To create a class Employee which inherits from the
class Person :

struct class Employee =
struct class ->new(name = ”Employee”,
parent = Person, ...)

Employee is instantiable as follows:

struct henry =
Employee->new(name = ”henry”,
salary = 10000)

Figure 3 shows these instantiation mechanisms.

Note that as the class class derives from the class
object , an instance of the class class can be manipu-
lated like any instance of the class object .

The native EYEDB object model is composed of 76
classes such as the class collection , the class method ,
the class constraint , the class index , the class image
and so on.
EYEDB object model supports all standard built-in types:
16-bit, 32-bit and 64-bit integer, char-
acter, string, 64-bit float .

An instance can be transient or persistent :

• an instance is transient if its lifetime does not ex-
ceed the lifetime of the unit of execution in which it is
manipulated,

• otherwise the instance is persistent .

A persistent instance can be object or literal :

• an object persistent instance has an unique
identifier (i.e. an oid),

• a literal persistent instance has no identifier.

4.1. Class Structure

A class is composed of a name, a parent class (except for
the class object which is the root class), a set of attributes,
a set of methods and a set of triggers:

• an attribute is composed of a type, an optionnal array
modifier and is literal or object . For instance,
using the EYEDB ODL language:

attribute int32 age

is a literal attribute of type int32 with no array
modifier, while the following attribute:

attribute Person *children[10]

is a fixed-size array of object of type Person .

• a method is a unit of execution tied to a class.
A method can be either a class method or an instance
method.



indirect inheritance

inheritance

instantiation

Struct
Class

Class Instance

Object

Struct

Person

Employee

mary

henry

john

Figure 3. Applicative Object Model Example

• a trigger is a unit of execution tied to a class. Triggers
are applied to instances of this class on a given event.
For example, a trigger update before tied to the
class X means that before the update of any instance
of the class X , the trigger will be called.
A method or a trigger can be overloaded by the
sub-classes.

EYEDB supports the following trigger events: cre-
ate before , create after , update before ,
update after , load before , load after ,
remove before , remove after .

4.2. Type Polymorphism

The two language bindings, C++ and Java, and EYEDB
OQL supports type polymorphism: variables may be bound
by instances of different types.
This is a direct consequence owing to the fact that any
EYEDB class inherits from the class object ,

The possibility of manipulating polymorphic objects
is a major contribution of object orientation.

4.3. The Collection Type

A collection is composed of elements of the same type.
The elements can be either literal or object .

If the collection element type is the class object ,
then the collection can contain instances of any class, as all
classes inherit from the class object .

The collection types supported by EYEDB are the
set , the bag and the array :

• an instance of the class set is an unordered collection
with no duplicates allowed,

• an instance of the class bag is an unordered collection
that may contain duplicates,

• an instance of the class array is a dynamically sized
ordered collection.

The collection type is a major concept of the EYEDB object
model.

4.4. Relationships

The EYEDB object model supports only binary rela-
tionships, i.e. relationships between two types.
A binary relationship may be one-to-one, one-to-many or
many-to-many depending on the cardinality of the related
types. Relationships are not named.

EYEDB maintains the referential integrity of relation-
ships. This means that if an object that participates in a
relationship is removed, then any traversal path to that
object is also removed.
EYEDB supports object-valued attribute: this kind of
attribute enables one object to reference another without
expectation of referential integrity. An object-valued
attribute implements a unidirectionnal relationship: in this
case, EYEDB does not guarantee the referential integrity.
Note that such a unidirectionnal relationship is not called a
relationship.

The example introduced in the section The Object
Definition Language illustrates the use of relationships and
object-valued attributes.



4.5. Constraints

EYEDB supports all standard constraints:

• the not null constraint on a attribute within a class
X means that no instances of the class X can have this
attribute value not assigned.

• the unique constraint on a attribute within a class X
means that one cannot create an instance of the class
X which has the same attribute value than an existing
instance in the database.

• the cardinality constraint on an instance of the
class collection means that the count of this col-
lection must follow this cardinality constraint.

5. The Object Definition Language

The EYEDB Object Definition Language (ODL) is a
language based on the ODMG ODL to define the specifica-
tions of object types.
ODL is not intended as a full programming language, it is
a definition language for objet specifications.

Like ODMG ODL, EYEDB ODL defines classes (in-
heritance and attributes), relationships and method
signatures. EYEDB ODL extends the ODMG ODL to
allow for the definition of attribute constraints (notnull,
unique, collection cardinality), index specifications and
trigger declarations. Unlike ODMG ODL, any instance of
a class can be used either as a literal or as an object .
EYEDB ODL also allows the user to specify whether a
method is backend (i.e. server side) or frontend (i.e. client
side), and whether it is a class or instance method.

Here is a simple example of an EYEDB ODL construct:

enum CivilState {

Lady = 0x10,

Sir = 0x20,

Miss = 0x40

};

class Address {

attribute char street[];

attribute char town[32];

};

class Person {

attribute char name[] (index[]);

attribute int age;

attribute Address addr;

attribute CivilState cstate;

attribute Person * spouse

(inverse<Person::spouse>);

attribute set<Car *> * cars

(inverse<Car::owner>);

attribute Person *children[];

instmethod void change_address(

in string street,

in string town,

out string oldstreet,

out string oldtown);

classmethod int getPersonCount();

};

class Car {

attribute char mark[];

attribute int num;

attribute Person *owner

(inverse<Person::cars>);

};

class Employee extends Person {

attribute long salary;

Person *boss;

};

This example illustrates all the concepts that we de-
scribed previously.
The class Person is composed of a number of attributes
each of one having an interesting particularity.
The name attribute is a variable size character array, i.e. a
string.
This attribute is literal , which means that it has no
identifier within a database. The hint index[] means that
this attribute should be indexed to provide efficient query
on the attribute value.

The age attribute is a simple literal 32-bit
integer .

The addr attribute is a literal user type attribute.
As this attribute is literal , the type attribute, Ad-
dress , must have been defined before, which is the case.

The next attribute spouse has two interesting partic-
ularities:

1. a * character follows the user type Person, meaning
that this attribute is not a literal but an object
(i.e. with an identifier). The * character means a refer-
ence to an object.

2. the hint (inverse <Person::spouse >) follow-
ing spouse means that this attribute is a relationship.



As the attribute spouse is not a collection and the
target attribute spouse is not a collection, this is a
one-to-one relationship.

The cars attribute has also several interesting particulari-
ties:

1. as a * character follows the user type, this is an ob-
ject .

2. this attribute is a set whose elements are object
of type Car . Note that the user type Car is defined
afterwards.

3. the hint (inverse <Car::owner >) following
cars means that this attribute is a relationship whose
target is the owner attribute within the class Car .
As the source attribute cars is a collection and the tar-
get attribute owner is not a collection, the relationship
is a many-to-one relationship.

As indicated by the keyword instmethod , the method
change address is an instance method. Note that this
keyword is optionnal as this is the default.
The method getPersonCount is a class method as
indicated by the classmethod keyword.

The class Employee inherits from the class Per-
son as indicated by the keyword extends . It introduces
two attributes salary , a literal integer attribute and
boss , an object attribute which reference an instance of
the class Person . Note that as there is no relationship in-
dication (i.e. inverse keyword), the boss attribute is an
object-valued attribute (i.e. a unidirectionnal relationship):
in this case, EYEDB does not guarantee the referential
integrity.

6. The Object Query Language

EYEDB provides a query language based on the ODMG
OQL.
Although EYEDB OQL is not an OML (i.e. an Object
Manipulation Language), most of the common language
operations can be performed (arithmetic and logical opera-
tions, string manipulation, flow control, function definition)
as well as query constructs.

EYEDB OQL adds a few features from the ODMG
OQL such as flow control (if else , foreach ), func-
tion definition, an assignement operator, and regular
expression operators.

For instance the following example is a EYEDB OQL
legal construct:

list := foreach x in flatten(1, 2, 10, 24)

("alpha_" + string(x));

function max(x, y) (if (x > y) x y);

function fib(n)

(if (n < 2) n (fib(n-1) + fib(n-2)));

Note that the previous code does not perform any query.

The following code perform queries:

Person; // returns all person

// instances

select x from Person; // idem

Person.name = "john"; // returns the persons

// whose name is "john"

Person.name ˜ "ˆa.*b"; // returns the instances

// whose name matches

// the regular expression

Person.name !˜˜ "ja" // returns the persons

// whose name does

// not matches the regular

// expression in a case

// insensitive way.

Person.age > 2 AND

Person.age < 10; // returns persons

// whose age is between

// 2 and 10.

Person.name; // returns all person

// names

select x.name from x

in Person; // idem

foreach x in (Person) // for each person

(if (x.name ˜ "ˆj") // whose name matches

x.name := \"_\" + // the regular expression

x.name;); // "j", adds a "_" before

// the name.

// set the age of the persons whose name

// is "john" to 20:

(Person.name = "john").age := 20;

7. The C++ Binding

The C++ binding maps the EYEDB object model into
C++ by introducing a generic API and a tool to generate



a specific C++ API from a given schema, built upon the
generic API.

Each class in the EYEDB object model is implemented
as a C++ class within the C++ API: there is a one-to-one
mapping between the object model and the C++ API.

7.1. Transient and Persistent Objects

There are two types of runtime objects: persistent
runtime objects and transient runtime objects.
A runtime object is persistent if it is tied to a database
object. Otherwise, it is transient.

By default, EYEDB does not provide an automatic
synchronisation between persistent runtime objects and
database objects.
When setting values on a persistent runtime object, we do
not modify the tied database object. One must call the
store method on the persistent runtime object to update
the tied database object.

Note that any persistent runtime object manipulation
must be done in the scope of a transaction.

7.2. Example

To illustrate object manipulations, we introduce a sim-
ple concrete example using the schema-oriented C++ API,
based on the previous ODL example construct:

// connecting to the EyeDB server

idbConnection conn;

conn.open();

// opening database dbname

personDataBase db(dbname);

db.open(&conn, idbDataBase::DBRW);

// beginning a transaction

db.transactionBegin();

// creating a Person

Person *p = new Person(&db);

// setting attribute values

p->setCstate(Sir);

p->setName(name);

p->setAge(age);

p->getAddr()->setStreet("voltair e") ;

p->getAddr()->setTown("paris");

// creating two cars

Car *car1 = new Car(&db);

car1->setMark("renault");

car1->setNum(18374);

Car *car2 = new Car(&db);

car2->setMark("ford");

car2->setNum(233491);

// adding the cars to the created person

p->addToCarsColl(car1);

p->addToCarsColl(car2);

// storing all in database

p->store(idbRecMode::FullRecurs);

// committing the transaction

db.transactionCommit();

A few remarks about this code:

1. the statement Person *p = new Person(&db)
creates a transient runtime object. This runtime ob-
ject is not tied to any database object until the store
method has been called.

2. all the selector and modifier methods such as set-
Name , getAddr , addToCarsColl have been gen-
erated by the EYEDB ODL compiler from the previous
ODL construct.

3. the idbRecMode::FullRecurs argument to the
store method allows the user for storing each ob-
ject related the calling instance: so the runtime ob-
ject car1 and car2 within the cars collection will
be automatically stored using the store method with
this argument.

4. the call to transactionCommit ensures that the
database changes will be kept in the database.

8. The Java Binding

The use of the Java language for an EYEDB binding has
been motivated by several reasons:

1. Java is architecture independent,

2. Java is valuable for distributed network environment,

3. Java has a very rich builtin library,

4. Java is secure,

5. Java is easier to program than C++.



The Java binding is very close from the C++ binding: the
class interfaces are identical, the functionalities are the
same; only the language is slightly different.

The previous C++ code is translated below for the
EYEDB Java API:

// connecting to the EyeDB server

idbConnection conn = new idbConnection();

// opening database dbname

person.DataBase db = new person.DataBase(dbname);

db.open(conn, idbDataBase.DBRW);

// beginning a transaction

db.transactionBegin();

// creating a Person

Person p = new Person(db);

// setting attribute values

p.setCstate(CivilState.Sir);

p.setName(name);

p.setAge(age);

p.getAddr().setStreet("voltaire" );

p.getAddr().setTown("paris");

// creating two cars

Car car1 = new Car(db);

car1.setMark("renault");

car1.setNum(18374);

Car car2 = new Car(db);

car2.setMark("ford");

car2.setNum(233491);

// adding the cars to the created person

p.addToCarsColl(car1);

p.addToCarsColl(car2);

// storing all in database

p.store(idbRecMode::FullRecurs);

// committing the transaction

db.transactionCommit();

As shown in this example, the code is absolutely iden-
tical except that that some -> in C++ are replaced by a .
character in Java.
The only difference that does not appear in our examples is
the object memory management. In the C++ example, one
should release all the allocated objects; it is not necessary
in Java.

9. The CORBA Binding

The EYEDB CORBA binding is composed of two major
components: the first one is a generic CORBA binding; the
second one is a schema-driven CORBA binding.

The generic CORBA binding is used to interoperate
with any EYEDB database in a generic way. This binding
is composed of:

1. a generic and complete IDL interface to the EYEDB
System.

2. a generic server which implements this generic inter-
face.

This generic IDL interface is a subset of the C++ and
Java generic APIs: it allows the user to perform all the
operations that can be performed with the C++ API except
a few database administration operations such as copying
or moving a database.

The schema-driven CORBA binding is used to work
with specific schemas within databases. This binding is
composed of:

1. a compiler generating IDL and CORBA implementa-
tion stubs from database schemas.

2. a mapping language IMDL (Interface Mapping Defini-
tion Language) to perform mapping customizations.

A schema-driven CORBA binding may be used conjointly
with the generic CORBA binding.

Because of the full interoperability of CORBA, the
generic CORBA binding can be used with any ORB (for
instance Orbix, Orbacus, VisiBroker).
The schema-driven CORBA binding generates C++ imple-
mentation code for Orbix or Orbacus ORBs. So to compile
the generated code, you need to have Orbix or Orbacus.
Once the implementation code has been compiled and is
running, you can use it with any ORB.

In both cases - generic and schema-driven bindings -
the architecture is a three-tier architecture based on the
following components:

1. the client,

2. the CORBA server: in case of the generic binding, this
server does not depend on any schema; in case of the
schema-driven binding, the server implementation is
generated from the database schema,

3. the EYEDB server.



9.1. The Generic CORBA Binding

The major external component of the generic binding
is the EYEDB IDL. The EYEDB IDL is composed of one
module (named EyeDB ORB ) which includes about forty
interfaces and a few literal types (i.e. struct, enum, union
and exception).

Each class in the EYEDB object model is bound to
an IDL interface. For instance, the object class is bound
to the EyeDB ORB::idbObject interface.
This interface is as follows:

module EyeDB_ORB {

// ...

interface idbObject {

readonly attribute idbClass cls;

readonly attribute idbOid oid;

readonly attribute idbDataBase db;

void store()

raises (idbException);

void storeRecMode(in idbRecMode rcm)

raises (idbException);

void remove()

raises (idbException);

};

Using the generic IDL, we introduce a piece of code
which creates a person instance, sets his age and name to
some given values and store it in the database:

// server binding, database opening and

// transaction begin

// [...]

// getting the database schema

EyeDB::idbScheme_var sch = db->sch();

// getting the class Person

// within the schema

EyeDB::idbClass_var person_cls =

sch->getClassFromName("Person");

// looks for the ‘age’ attribute

// within the Person class

EyeDB::idbAttribute_var age_field =

person_cls->getAttributeFromNam e("a ge" );

// looks for the ‘name’ attribute

// within the Person class

EyeDB::idbAttribute_var name_field =

person_cls->getAttributeFromNam e("n ame ");

// instantiating a Person

EyeDB::idbObject person = person_cls->newObj();

// set the age to 32

age_field->setInt32Value(person, 0, 32);

// set the name to "john"

name_field->setStringValue(person , "john");

// store the change in the database

person->store();

9.2. The Schema-driven CORBA Binding

The previous section shows that the generic IDL inter-
face is not very user friendly to set or get attribute values.

For instance, to get or set the age attribute value of
an instance of the class Person , it would be very nice to
dispose of methods such as getAge and setAge .
With the schema-driven CORBA binding, the user can
dispose of such methods and much more.

The input information needed by the schema-driven
CORBA binding is a schema: an ODL file or a database
containing this schema.
From this information, the compiler generates a schema-
driven CORBA bridge composed of:

1. an IDL file,

2. a complete implementation of the generated IDL,

3. a simple sample CORBA server to drive this CORBA
bridge.

For instance, from the previous Person ODL class, the
generated IDL will look like:

interface Person {

attribute string name;

// mapped from Person::name

attribute long age;

// mapped from Person::age

attribute Address addr;

// mapped from Person::addr

// other attributes...

};

We say that the generated IDL Person interface is
mapped from the ODL Person class.
Each interface attribute is mapped from the correspond-
ing ODL attribute.

It is then very simple to manipulate the attributes of
an instance of the class Person . For example, the
previous code becomes:



// instantiating a Person

Person_var person = person_factory->

makePerson();

// set the age to 32

person->age(32);

// set the name to "john"

person->name("john");

// store the change in the database

person->store();

9.3. Customizing a schema-driven CORBA Binding

As exposed in the previous section, a schema-driven
CORBA bridge can be generated in a quite automatical
way from any database schema.
Nevertheless, this last approach is a little bit restrictive in
a information system where the external interface that we
want to provide is not a one-to-one bridge of the database
scheme.
Some attributes stored in the database do not necessary
need to be exported in the CORBA interface.
Furthermore, a database schema could be organized in a
particular way linked to some implementation constraints
for query efficiency.
In a more general case, one should want to provide a
CORBA view with a more simple, or more pertinent
semantics than the database schema semantics.

EYEDB provides a powerful service to realize a tar-
get IDL mapping from one or several ODL schemas.
This service, named IMS (Interface Mapping Service), is
based on the IMDL language (Interface Mapping Definition
Language) a superset of CORBA IDL.

IMS allows the user to control the mapping for each
attribute and method within an IDL interface.

Using the IMS, an IDL interface attribute can be mapped:

- from an ODL attribute,
- from a OQL construct,
- from a C++ expression,
- or not be mapped.

An IDL interface method can be mapped:

- from an ODL method,
- from a OQL construct,
- from a C++ expression
- from arbitraty C++ code,

- or not be mapped.

For instance, let’s define an interface MyEmployee
mapped from the ODL class Employee in the database
and composed of the following attributes:

- his name,
- the name of his spouse,
- his salary converted to euro,
- a boolean indicating if he has children or not,
- a boolean indicating if he his rich,
- his spouse car list.

Here is an IMDL construct implementing the previ-
ous specifications:

interface MyEmployee from Employee : Person {

// his name

map attribute string name

from name;

// the spouse name

map attribute string spouse_name

from spouse.name;

// his salary converted to euro

map attribute long euro_salary

from expr("salary() / 6.55957") :

expr("salary(_euro_salary * 6.55957)");

// an attribute indicating if he has children

map readonly attribute boolean hasChildren from

expr("self->getChildrenCount() ? 1 : 0");

// an attribute indicating if he is rich

map readonly attribute boolean isRich from

expr("euro_salary() > 10000");

// his spouse car list

map readonly attribute CarList spouse_cars from

spouse.cars;

};

10. Using the EYEDB OODBMS

The EYEDB OODBMS has been used in several
projects related to genetics and molecular biology. It was
first used at Généthon for the human genome mapping
project. It is also in use at Infobiogen and currently
undergoes testing in several locations, including industrial
companies.



Genomic data represents a good test case for an OODBMS
because:

• the data are complex and present numerous cross-
references,

• there is a strong hierarchy in the semantic concepts of
genomics that inheritance can properly model,

• the genomic databases must manage the huge amounts
of data produced by the genome mapping and sequenc-
ing projects.

• genomic data are disseminated in a myriad of data-
bases, that should be integrated in some way.

The EYEDB OODBMS is used for several databases:

• the HuGeMap database [7, 9],

• the Virgil database [1, 2, 3],

• the GidB database [6].

HuGeMap contains human genome mapping data, de-
scribed by a EYEDB schema of 56 classes. It contains
more than 1 million of different objects. It is accessible
from the EYEDB generic Web server as well as from a
CORBA server customized with IMDL. It is interesting
to note that the target IDL was defined by the genome
mapping community as a standard for data exchange a
posteriori to the HuGeMap schema [8].

Two graphical interfaces have been developed as clients of
the HuGeMap database: MappetShow [13] and ZoomMap
[16]. The former was written in Java and makes use of the
EYEDB Java API or of the EYEDB CORBA binding. The
latter was written with the EYEDB C++ API. These clients
are real-time applications that deal with several hundred
thousands of database objects.

Virgil contains links that relate objects from two other
biological databases (GenBank and the Genome DataBase).
Virgil is accessible from the EYEDB generic Web server
as well as from a CORBA server.

GidB, the Généthon image database, stores images
from the Généthon gene therapy project. Gidb is accessible
from a customized Web server.

11. EYEDB and the other OODBMS

Since the beginning of this decade, a lot of OODBMS
appeared on the market. Some of them are now well known
and are largely used: O2 [4], ObjectStore [10], POET [17],
VERSANT [12], ONTOS [5], Objectivity [15]. We try to
give here a few comparison elements between EYEDB and
these OODBMS.

11.1. Functionalities Comparison

EYEDB provides currently less functionnalities than
some of these OODBMS. For instance, EYEDB does not
provide versioning and replication functionalities and no
Graphical User Interface are offered except a primitive
WEB based tool allowing the browsing of any database.
On the other hand, EYEDB put priority on languages: it
provides an extended ODMG OQL, an extended ODMG
ODL, a powerful interface mapping language IMDL to de-
fine and generate CORBA views, a C++ and a Java binding.
Furthermore, EYEDB OQL is currently being extended to
become an actual programming language (i.e. both a ma-
nipulation and query language).

11.2. Performance Comparison

As no standardized benchmarks have yet been run on
EYEDB, it is somewhat risky to say that EYEDB is faster
than so-and-so other OODBMS. However, EYEDB has
been designed to be as efficient as possible: efficiency and
lightness are its leading features:

• EYEDB is built on a every efficient and lightweight
memory mapped storage manager,

• this storage manager is currently being adapted to take
fully benefit from the 64-bit architecture,

• it provides a local mode access which allows the client
to map database objects directly in his virtual space
avoiding so any buffer copies at reading,

• it provides also a transaction less mode to access ob-
ject in a read only databases avoiding the overhead of
object locking and transaction computing.

Benchmarks will be run for comparison with other
OODBMS.

12. Conclusion

EYEDB is not a major breakthrough in the conception
of database systems but is rather a synthesis of state of art
techniques driven by application requirements and taking
advantage of the present and forthcoming evolutions of
hardware and operating system. For example, it will greatly
benefit from the 64-bit architecture since it is based on a
virtual memory mapping strategy.

EYEDB allows for the management of large databases with
a complex data schema and offers very good performance
to access data.
EYEDB follows the ODMG specifications and can dis-
tribute objects using the OMG CORBA standard.



EYEDB is now about 200,000 lines of C++ code and
Java code. It runs on Solaris 2.x Sparc platforms and will
be ported to Linux during the first semester of 1999.

You can get more information on the OODBMS EYEDB
at the EYEDB home page [19]. This page contains the full
online programming manual, links to related publications
and a trial version for Solaris can be downloaded.

13. Acknowledgements

The EYEDB OODBMS [19] has been developed at
Sysra Informatique since 1994 in collaboration with the GIS
INFOBIOGEN, with funding from the ANVAR, the Conseil
Régional d’Ile de France and from the European Commis-
sion (BIO4-CT96-0346).

References

[1] F. Achard and E. Barillot. Virgil: a database of rich links
between GDB and GenBank. Nucleic Acids Research,
26(1):100–101, 1998.

[2] F. Achard, C. Cussat-Blanc, E. Viara, and E. Barillot. The
new Virgil database: a service of rich links. BIOINFOR-
MATICS, 14(4):342–348, 1998.

[3] F. Achard, G. Vaysseix, P. Dessen, and E. Barillot. Virgil
database for rich links (1999 update). Nucleic Acids Re-
search, 27:113–114, 1999.

[4] M. Adiba and C. Collet. Objets et bases de données, le
SGBD O2. Hermès, 1993.

[5] T. Andrews and all. The ONTOS Object Database. Onto-
logic, Inc, Burlington, Massachusetts, 1989.

[6] N. Armande. Gidb, the Généthon image database.
http://www.genethon.fr/bdimage/bdimage.html.

[7] E. Barillot, F. Guyon, C. Cussat-Blanc, E. Viara, and
G. Vaysseix. HuGeMap: a distributed and integrated Human
Genome Map database. Nucleic Acids Research, 26:106–
107, 1998.

[8] E. Barillot, U. Leser, P. Lijnzaad, C. Cussat-Blanc,
K. Jungfer, F. Guyon, C. H. G. Vaysseix, and P. Rodriguez-
Tomé. A proposal for a CORBA interface for genome maps.
BIOINFORMATICS, 15, 1999.

[9] E. Barillot, S. Pook, F. Guyon, C. Cussat-Blanc, E. Viara,
and G. Vaysseix. The HuGeMap database: Interconnection
and Visualisation of Human Genome Maps. Nucleic Acids
Research, 27:119–122, 1999.

[10] C. Lamb et al. The objectstore database system. Communi-
cations of the ACM, 34(10), pages 50–63, 1991.

[11] C. G. G. Cattell and al. Object Database Standard, ODMG
2.0. Morgan Kaufmann, 1997.

[12] V. Corporation. Versant Corporation.
http://www.versant.com/.

[13] F. Guyon. Mappetshow, a viewer for very dense
maps. http://www.infobiogen.fr/services/Mappet/Mappet-
Show.html.

[14] H. F. Korth and A. Silberschatz. Database system concepts.
MacGraw-Hill, 1991.

[15] Objectivity. Welcome to objectivity.
http://www.objectivity.com/.

[16] S. Pook, G. Vaysseix, and E. Barillot. Zomit: biological data
visualisation and browsing. BIOINFORMATICS, 14:807–
814, 1998.

[17] P. Software. Data management for the Internet Age.
http://www.poet.com/.

[18] M. Stonebraker and J. M. Hellerstein, editors. readings in
database systems. Morgan Kaufmann, 1998.

[19] E. Viara. The EYEDB Home Page.
http://www.sysra.com/eyedb/.


