EYEDB Overview

Version 2.8.8

December 2007

Copyright © 1994-2008 SYSRA

Published by SYSRA
30, avenue Général Leclerc
91330 Yerres - France

home page: http://www.eyedb.org

Contents

[\

Introduction L L 5
The Architecture L 5
The Storage Manager Subsystem L 6
3.1 Raw Data Managemento 6
3.2 Memory Mapped Architecture 6
3.3 Transactional Services Lo e e 7
3.4 The Recovery System e 7
3.5 B-Tree and Hash Indexes e 7
3.6 Multi-Volume Database Management L L 7
The Object Model e 7
4.1 Class Structure o e e e e e 8
4.2 Type Polymorphism e e e 9
4.3 The Collection Type L e e e 9
4.4 Relationships o L o 10
4.5 Constraints L L e 10
The Object Definition Language e 10
The Object Query Language e 11
The CH++ Binding« . . o 12
7.1 Transient and Persistent Objects L 13
The Java Binding 14
Conclusion L e e 15

CONTENTS

Overview

This document presents a quick overview of EYEDB. All the topics introduced here are developped in the other documents.

1

Introduction

The key features of the EYEDB OODBMS are:

standard OODBMS features: persistent typed data management; client/server model; transactional services;
recovery system; expressive object model; inheritance; integrity constraints; methods; triggers; query language;
application programming interfaces ...

language orientation: a definition language based on the ODMG Object Definition Language (ODL); a query
language based on the ODMG Object Query Language (OQL); several manipulation language bindings (at least
C++ and Java),

genericity and orthogonality of the object model: inspired by the SmallTalk, LOOPS, Java and ObjVlisp
object models (i.e. every class derives from the class object and can be manipulated as an object); type poly-
morphism; binary relationships; literal and object types; transient and persistent objects; method and trigger
overloading; template-based collections such as set, bag and array; multi-dimensional and variable size dimensional
arrays,

support for large databases: databases up to several Tb (tera-bytes),

efficiency: database objects must be directly mapped within the virtual memory space; object memory copy must
be reduced to the minimum; clever caching policies must be implemented,

scalability: programs must be able to deal with hundred of millions of objects without loss of performance.

We describe below how EYEDB meets these requirements. Section 2 introduces the storage manager subsystem. In section
3, the object model is exposed. Sections 4 and 5 describe the EYEDB object definition language and query language.
Sections 6 and 7 deal with the C++ and Java bindings.

2

The Architecture

EYEDB is based on a client/server architecture as shown in Figure 1.

The EYEDB server is composed of:

the server protocol layer based on Remote Procedure Call (RPC),
the object model implementation,
the OQL engine,

the storage manager subsystem.

A client is composed of:

the user application code,
the C++ (resp. Java) API implementing the C++ (resp. Java) binding,

the client protocol layer based on RPC.

6 CONTENTS

Client Client
Application Code Application Code
C++ API Java API
RPC Layer RPC Layer
TCP/IP
RPC Layer

g Object Model

E% Implementation OQL Engine

O | Method Dynamic L oader

Transaction
Concurrence Index

%;% R&cg\gr_ly Services Services Databases

S

72

Memory Mapped Storage M anager

Server

Figure 1: The EYEDB Architecture

3 The Storage Manager Subsystem

EYEDB is based on a client/server architecture. The server kernel is the storage manager subsystem providing the following

main services:
- persistent raw data management,
- transactional services,
- recovery system,
- B-tree and hash indexes,
- multi-volume database management.

The storage manager can be used independently from EYEDB.

3.1 Raw Data Management

The central concept of the storage manager is the raw object. A raw object is a piece of persistent raw data tied to an
object identifier named oid .

An oid identifies a raw object in a unique way within a set of databases. It is generated by the storage manager at raw
object creation.

An oid is composed of three fields: the storage index, the database identifier and a random generated magic number.
The first field identifies the object physical location within a database volume. The second one identifies a database and
the last one ensures more security in the object identification process.

The storage manager is responsible for the management of raw objects:
e raw object creation (storage allocation, oid allocation, object storage),
e raw object update (contents modification),
e raw object reading,
e raw object deleting (oid deallocation, storage deallocation),
e raw object resizing (storage reallocation, object moving),
e raw object locking and unlocking (share locking, exclusive locking, private locking),

e raw object access control

3.2 Memory Mapped Architecture

The storage manager is based on a memory mapped architecture. Database volumes are mapped within the server virtual
memory space.
Due to some 32-bit system limitations, the databases greater than 2Gb cannot be mapped as a whole.

The storage manager implements a segment-based mapping algorithm: when reading an object, the storage manager
checks if the corresponding storage piece is mapped within its virtual memory space. If it is not mapped, it maps a large

4. THE OBJECT MODEL 7

segment of data around the raw object, eventually extending a neighboring segment.

If the total mapped size is more than the system maximum, it unmaps the less recent used mapped segment. On 64-bit
system, this algorithm is not needed as databases up to several Tb (i.e. tera-bytes) can be mapped at whole within the
virtual memory space.

Currently, the storage manager can deal with databases up to one Tb.

3.3 Transactional Services

The storage manager provides standard transaction services which guarantees atomicity, consistency, isolation and integrity
within a database.

Its transaction unit is based on a two-phase locking protocol. The protocol requires that each transaction issues lock and
unlock requests in two phases:

e growing phase: a transaction may obtain locks but may not release any lock.
e shrinking phase: a transaction may release locks but may not obtain any new lock.

Initially, a transaction is in the growing phase. The transaction acquires locks as needed. Once the transaction releases a
lock, it enters the shrinking phase and no more lock requests may be issued.

The storage manager provides different transaction locking modes: read and write shared, read shared and write ex-
clusive, read and write exclusive or database exclusive.
It provides immediate deadlock detection.

3.4 The Recovery System
The storage manager provides a simple but efficient recovery system against failures:
e client failure: the transaction is automatically aborted by the server.

e server failure or operating system failure: the current transactions will be automatically aborted on the next database
opening.

e the disk failure recovery is not supported: this is a deliberate choice of simplicity since storage consistency can rely
on the RAID technology or transactional file systems now available on modern operating systems.

3.5 B-Tree and Hash Indexes

The storage manager provides support for B-Tree and Hash indexes.

The B-Tree index provides fixed size raw data indexation, efficient exact match query and range query.

The Hash index provides variable size raw data indexation and efficient exact match query. The hash key function can be
provided by the client.

3.6 Multi-Volume Database Management

The database storage unit is the volume files. A database can contains up to 512 volumes each one up to 2Gb on a 32-bit
file system interface, or up to several tera-bytes on a 64-bit file system interface. The storage manager provides facilities
to add, move, resize and reorganize database volumes.

4 The Object Model

The EYEDB object model is inspired by the SmallTalk, LOOPS, ObjVlisp, Java and ODMG models.

The main three class abstractions are the class object which is the root class, the class class and the class instance as
shown in Figure 2.

Generally speaking, the instantiation of a class X gives an instance of the class X.
An instance cannot be instantiated except the instances of the class class or its subclasses: the instantiation of an instance
of the class class is an instance of the class instance (i.e. an instance of the class instance).

If new() denotes the instantiation method:

struct_class Person =
struct_class->new(name = ”Person”, ...)

8 CONTENTS

Instance

Enum Collection Agregat :
[Class j [Classj [Cla.% j [Enum j [CollectlorJ

Agregat j

=

———= inheritance

Figure 2: Partial Native Object Model

Person is an instance of the class struct_class that can be instantiated:

struct john =
Person->new(name = ”john”, age = 32)

john is an instance of the class struct that cannot be instantiated

struct_class Employee =
struct_class->new(name = ”Employee”,
parent = Person, ...)

struct henry =
Employee->new(name = ”henry”,
salary = 10000)

Figure 3 shows this instantiation mechanisms.

Note that as the class class derives from the class object, an instance of the class class can be manipulated like
any instance of the class object.

The native EYEDB object model is composed of 76 classes such as the class collection, the class method, the class
constraint, the class index, the class image and so on.

EYEDB object model supports all standard built-in types: 16-bit, 32-bit and 64-bit integer, character, string,
64-bit float.

An instance can be transient or persistent:
e aninstanceis transient if its lifetime does not exceed the lifetime of the unit of execution in which it is manipulated.
e otherwise the instance is persistent.

A persistent instance can be object or literal:
e an object persistent instance has an unique identifier (i.e. an oid)

e a literal persistent instance has no identifier.

4.1 Class Structure

A class is composed of a name, a parent class (except for the class object which is the root class), a set of attributes, a
set of methods and a set of triggers:

e an attribute is composed of a type, an optionnal array modifier and is literal or object. For instance, using the
EYEDB ODL language:

attribute int32 age

4. THE OBJECT MODEL 9

— = ingtantiation
—* inheritance

""""" = indirect inheritance Employee =

Figure 3: Applicative Object Model Example

is a literal attribute of type int32 with no array modifier, while the following attribute:
attribute Person *children[10]

is a fixed-size array of object of type Person.

e a method is a unit of execution tied to a class.
A method can be either a class method or an instance method.

e a trigger is a unit of execution tied to a class. Triggers are applied to instances of this class on a given event.
For example, a trigger update_before tied to the class X means that before the update of any instance of the class
X, the trigger will be called.

A method or a trigger can be overloaded by the sub-classes.

EYEDB supports the following trigger events: create_before, create_after, update_before, update_after, load before,
load_after, remove_before, remove_after.

4.2 Type Polymorphism

The two language bindings, C++ and Java, and EYEDB OQL supports type polymorphism: variables may be bound by
instances of different types.
This is a direct consequence owing to the fact that any EYEDB class inherits from the class object,

The possibility of manipulating polymorphic objects is a major contribution of object orientation.

4.3 The Collection Type

A collection is composed of elements of the same type.
The elements can be either literal or object.

If the collection element type is the class object, then the collection can contain instances of any class, as all classes
inherit from the class object.

The collection types supported by EYEDB are the set, the bag and the array:
e an instance of the class set is an unordered collection with no duplicates allowed,
e an instance of the class bag is an unordered collection that may contain duplicates,
e an instance of the class array instance is dynamically sized ordered collection.

The collection type is a major concept of the EYEDB object model.

10 CONTENTS

4.4 Relationships

The EYEDB object model supports only binary relationships, i.e. relationships between two types.
A binary relationship may be one-to-one, one-to-many or many-to-many depending on the cardinality of the related types.
Relationships are not named.

EYEDB maintains the referential integrity of relationships. This means that if an object that participates in a rela-
tionship is removed, then any traversal path to that object is also removed.

EYEDB supports object-valued attribute: this kind of attribute enables one object to reference another without expecta-
tion of referencial integrity. An object-valued attribute implements a unidirectionnal relationship: in this case, EYEDB
does not guarantee the referential integrity. Note that such a unidirectionnal relationship is not called a relationship.

The example introduced in the section The Object Definition Language illustrates the use of relationships and object-
valued attributes.

4.5 Constraints

EYEDB supports all standard constraints:

e the not null constraint on a attribute within a class X means that no instances of the class X can have this attribute
value not assigned.

e the unique constraint on a attribute within a class X means that one cannot create an instance of the class X which
has the same
attribute value than an existing instance in the database.

e the cardinality constraint on an instance of the class collection means that the count of this collection must
follow this cardinality constraint.

5 The Object Definition Language

The EYEDB Object Definition Language (ODL) is a language based on the ODMG ODL to define the specifications of
object types.
ODL is not intended to be a full programming language, it is a definition language for objet specifications.

Like ODMG ODL, EYEDB ODL defines classes (inheritance and attributes), relationships and method signatures. EYEDB
ODL extends the ODMG ODL to allow the definition of attribute constraints (notnull, unique, collection cardinality),
index specifications and trigger declarations. Unlike ODMG ODL, any instance of a class can be used either as a literal
or as an object. EYEDB ODL also allows the user to specify whether a method is backend (i.e. server side) or frontend
(i.e. client side), and whether it is a class or instance method.

Here is a simple example of an EYEDB ODL construct:

enum CivilState {

Lady = 0x10,
Sir = 0x20,
Miss = 0x40

};

class Address {
attribute string street;
attribute string<32> town;

};

class Person {
attribute string name;
attribute int age;
attribute Address addr;
attribute CivilState cstate;
attribute Person * spouse inverse Person::spouse;
attribute set<Car *> * cars inverse Car::owner;
attribute Person *children[];

instmethod void change_address(in string street,

6. THE OBJECT QUERY LANGUAGE 11

in string town,
out string oldstreet,
out string oldtown);

classmethod int getPersonCount();
index on name;

};

class Car {
attribute string brand;
attribute int num;
attribute Person *owner inverse Person::cars;

};

class Employee extends Person {
attribute long salary;
Person *boss;

};

This example illustrates all the concepts that we described previously.
The class Person is composed of a number of attributes each of one having an interesting particularity.
The name attribute is a variable size character array, i.e. a string.
This attribute is literal, which means that it has no identifier within a database. The hint index means that this
attribute should be indexed to provide efficient query according to the attribute value.

The age attribute is a simple literal 32-bit integer.

The addr attribute is a literal user type attribute. As this attribute is literal, the type attribute, Address, must
have been defined before, which is the case.

The next attribute spouse has two interesting particularities:

1. a * character follows the user type Person, meaning that this attribute is not a literal but an object (i.e. with
an identifier). The * character means a reference to an object.

2. the hint (invers Person::spouse following spouse means that this attribute is a relationship.
As the attribute spouse is not a collection and the target attribute spouse is not a collection, this is a one-to-one
relationship.

The cars attribute has also several interesting particularities:

*

1. as a * character follows the user type, this is an object.

2. this attribute is a set whose elements are object of type Car. Note that the user type Car is defined after.

3. the hint (inverse Car::owner following cars means that this attribute is a relationship whose target is the owner
attribute within the class Car.
As the source attribute cars is a collection and the target attribute owner is not a collection, the relationship is a
many-to-one relationship.

As indicated by the keyword instmethod, the method change_address is an instance method. Note that this keyword is
optionnal as this is the default.
The method getPersonCount is a class method as indicated by the classmethod keyword.

The class Employee inherits from the class Person as indicated by the keyword extends. It introduces two attributes
salary, a literal integer attribute and boss, an object attribute which reference an instance of the class Person. Note
that as there is no relationship indication (i.e. inverse keyword), the boss attribute is an object-valued attribute (i.e. a
unidirectionnal relationship): in this case, EYEDB does not guarantee the referential integrity.

6 The Object Query Language

EYEDB provides a query language based on the ODMG OQL.

Although EYEDB OQL is not an OML (i.e. an Object Manipulation Language), most of the common language operations
can be performed (arithmetic and logical operations, string manipulation, flow control, function definition) as well as query
constructs.

12

CONTENTS

EYEDB OQL adds a few features from the ODMG OQL such as flow control (if else, for, while), function defini-

tion, an assignement operator, and

regular expression operators.

For instance the following examples are EYEDB OQL legal constructs:

function max(x, y) {return (x

function fib(n) {
if (n < 2)
return n;
return fib(n-1) + fib(n-2);
};

for (x in list(1, 2, 3, 4))
fib(x);

for (x := 0; x < 10; x++)
fib(x);

Note that the previous code do

>y ?7x:y)};

es not perform any query.

The following code perform queries:

select Person; // ret
select x from Person; // ide
select Person.name = "john";
select Person.name ~ "“a.*b";
select Person.name !~~ "ja" //

//

//

select x from Person x where x
x.age <

select Person.name; // ret
select x.name from Person x;

for (x in (select Person)) //

if (x.name ~ ""j") //
x.name := \"_\" + //
X.name; ; //

//

urns the 0IDs of all Person instances
m
// returns the Person whose name is "john"

// returns the instances whose name matches
// the regular expression

returns the Person whose name does
not matches the regular expression in a case
insensitive way.

.age > 2 && // returns Person whose age is between
10; // 2 and 10.

urns all Person names
// idem

for each Person

whose name matches

the regular expression
"j", adds a "_" before
the name.

// set the age of the Person whose name

// is "john" to 20:
(select Person.name = "john").

age := 20;

7 The C++ Binding

The C++ binding maps the EYEDB object model into C++ by introducing a generic API and a tool to generate a specific
C++ API from a given schema, built upon the generic API.

Each class in the EYEDB object model is implemented as a C++ class within the C++4 API: there is a one-to-one
mapping between the object model and the C++ APL.

7. THE C++ BINDING

7.1 Transient and Persistent Objects

There are two types of runtime objects: persistent runtime objects and transient runtime objects.
A runtime object is persistent if it is tied to a database object. Otherwise, it is transient.

By default, EYEDB does not provide an automatic synchronisation between persistent runtime objects and database

objects.

When setting values on a persistent runtime object, we do not modify the tied database object. One must call the store
method on the persistent runtime object to update the tied database object.

Note that any persistent runtime object manipulation must be done in the scope of a transaction.

To illustrate object manipulations, we introduce a simple concrete example using the schema-oriented C++ API, based

on the previous ODL example construct:

// connecting to the EyeDB server
eyedb: :Connection conn;
conn.open() ;

// opening database dbname
personDatabase db(dbname) ;
db.open(&conn, eyedb::Database::DBRW) ;

// beginning a transaction
db.transactionBegin();

// creating a Person
Person *p = new Person(&db) ;

// setting attribute values
p—>setCstate(Sir);
p—>setName (name) ;
p->setAge(age) ;

p—>getAddr () ->setStreet("voltaire");
p->getAddr () ->setTown("paris");

// creating two cars
Car *carl = new Car(&db);
carl->setBrand("renault");
carl->setNum(18374);

Car *car2 = new Car(&db);
car2->setBrand("ford");
car2->setNum(233491) ;

// adding the cars to the created person
p->addToCarsColl(carl) ;
p->addToCarsColl(car2) ;

// storing all in database
p—>store(eyedb: :RecMode: :FullRecurs) ;

// committing the transaction
db.transactionCommit () ;

A few remarks about this code:

1. the statement Person *p = new Person(&db) creates a transient runtime object. This runtime object is not tied
to any database object until the store method has been called.

2. all the selector and modifier methods such as setName, getAddr, addToCarsColl have been generated by the EYEDB
ODL compiler from the previous ODL construct.

3. the eyedb: :RecMode: :FullRecurs argument to the store method allows the user for storing each object related the
calling instance: so the runtime object carl and car2 within the cars collection will be automatically stored using

the store method with this argument.

14 CONTENTS

4. the call to transactionCommit ensures that the database changes will be kept in the database.

8 The Java Binding

The use of the Java language for an EYEDB binding has been motivated by several reasons:
1. Java is architecture independent,
2. Java is valuable for distributed network environment,
3. Java has a very rich builtin library,
4. Java is secure,
5. Java is easier to program than C++.

The Java binding is very close from the C++ binding: the class interfaces are identical, the functionalities are the same;
only the language is slightly different.

The previous C++ code is here translated for the EYEDB Java API:

// connecting to the EyeDB server
org.eyedb.Connection conn = new org.eyedb.Connection();

// opening database dbname
person.Database db = new person.Database(dbname) ;
db.open(conn, org.eyedb.Database.DBRW) ;

// beginning a transaction
db.transactionBegin();

// creating a Person
Person p = new Person(db);

// setting attribute values
p.setCstate(CivilState.Sir);
p.setName (name) ;
p.setAge(age);

p-getAddr() .setStreet("voltaire");
p-getAddr() .setTown("paris");

// creating two cars

Car carl = new Car(db);
carl.setBrand("renault");
carl.setNum(18374);

Car car2 = new Car(db);
car2.setBrand("ford");
car2.setNum(233491) ;

// adding the cars to the created person
p.addToCarsColl(carl);
p.addToCarsColl(car2) ;

// storing all in database
p.store(org.eyedb.RecMode: :FullRecurs) ;

// committing the transaction
db.transactionCommit () ;

As shown in this example, the code is absolutely identical except that that some -> in C++ are replaced by a .
character in Java.
The only difference that does not appear in our examples is the object memory management. In the C4++ example, one
should release all the allocated objects; it is not necessary in Java.

9. CONCLUSION 15

9 Conclusion

This chapter provided a quick overview of the EYEDB OODBMS. The next chapter provides a more pragmatical approach
of EYEDB by working through a simple example of defining an ODL schema and manipulating persistent data in OQL,
C++ and Java.

