
EYEDB Object Query Language
Version 2.8.8

December 2007

Copyright c© 1994-2008 SYSRA

Published by SYSRA
30, avenue Général Leclerc
91330 Yerres - France

home page: http://www.eyedb.org

Contents

1 Introduction . 5
2 Principles . 5
3 OQL vs. ODMG 3 OQL . 5
4 Language Concepts . 7
5 Language Syntax . 8

5.1 Terminal Atom Syntax . 8
5.2 Non Terminal Atom Production . 10
5.3 Keywords . 11
5.4 Comments . 11
5.5 Statements . 12
5.6 Expression Statements . 12
5.7 Atomic Literal Expressions . 14
5.8 Arithmetic Expressions . 14
5.9 Assignment Expressions . 18
5.10 Auto Increment & Decrement Expressions . 19
5.11 Comparison Expressions . 20
5.12 Logical Expressions . 24
5.13 Conditional Expression . 24
5.14 Expression Sequences . 25
5.15 Array Deferencing . 25
5.16 Identifier Expressions . 28
5.17 Path Expressions . 32
5.18 Function Call . 33
5.19 Method Invocation . 34
5.20 Eval/Unval Operators . 37
5.21 Set Expressions . 38
5.22 Object Creation . 40
5.23 Object Deletion . 42
5.24 Collection Expressions . 42
5.25 Exception Expressions . 49
5.26 Function Definition Expressions . 49
5.27 Conversion Expressions . 51
5.28 Type Information Expressions . 54
5.29 Query Expressions . 55
5.30 Miscellenaous Expressions . 59
5.31 Selection Statements . 60
5.32 Iteration Statements . 61
5.33 Jump Statements . 63
5.34 Function Definition Statements . 64

6 Quick Reference Manual . 68
6.1 Builtin and Library Functions and Methods . 68
6.2 Special Variables . 71
6.3 The eyedboql Tool . 71
6.4 The Standard Library Package . 75
6.5 OQL Quick Reference Card . 89

3

4 CONTENTS

The Object Query Language

.

1 Introduction

In this chapter, we present the EyeDB Object Query Language which supports the EyeDB object model. It is based on
the ODMG 3 Object Query Language OQL.

We first describe the design principles of the language in Section 2, then we present in Section 3 the main differences
between EyeDB OQL and ODMG OQL. The language concepts are presented in Section 4. In Section 5, we introduced
the language syntax. A quick reference manual of OQL is given in Section 6.

In this chapter, OQL denotes the EyeDB Object Query Language while the standard ODMG 3 Object Query Language
will be denoted as ODMG OQL.

2 Principles

The principles of OQL are close to the principles of ODMG OQL introduced in the book Object Database Standard, ODMG
3 by Rick Cattell and al.

Our design is based on the following principles and assumptions:

• OQL relies on the EyeDB Object Model.

• OQL is based on ODMG OQL close to SQL 92. Extensions to SQL 92 concern object-oriented notions, like
complex objects, object identify, path expressions, polymorphim, operation invocation and late binding. Extensions
to ODMG OQL concern function definitions, selection statements, iteration statement, assignment operator (see
Section 3).

• OQL provides high level primitives to deal with sets of objects, structures, lists and arrays.

• OQL is a functional language where operators can freely be composed as long as the operands respect the type
system.

• OQL is computationally complete.

• OQL can be invoked from within programming languages for which an EyeDB binding is defined (currently C++
and Java). Conversely, OQL can invoke operations programmed in this language.

3 OQL vs. ODMG 3 OQL

OQL implements all the ODMG OQL functionalities with a few exceptions concerning the select clause. In order to
accept the whole DML (Data Manipulation Language) query part of SQL as a valid syntax for ODMG OQL, ad-hoc
constructions have been added to ODMG OQL each time SQL introduces a syntax that cannot be considered in the
category of true operators.

For instance, the following construct is a valid ODMG OQL construct:

select p.name, salary from Professors p

This construct is not currently a valid OQL construct. The alternate valid OQL form is:

select struct(name: p.name, salary: p.salary) from Professors p

5

6 CONTENTS

In the same way, ODMG OQL accepts SQL forms of the agregate operators min, max, count, sum and avg, for instance:

select count(*) from Persons

select max(e.salary) from Employees e

These constructs are not currently valid OQL constructs. The alternate valid OQL forms are:

count(select p from Persons p)

max(select e.salary from Employees e)

In the same way, the select * clause is not currently implemented in OQL, neither the implicit select clause (i.e. without
explicit identifier). For instance, the following constructs are not OQL valid constructs, although there are valid ODMG
OQL constructs:

select * from Person

select name from Person

There is no alternate OQL valid form for the first construct. The alternate OQL valid forms for the second construct is:

select Person.name

select p.name from Person p

select p.name from Person as p

select p.name from p in Person

On the other hand, OQL provides a few extensions to ODMG OQL:

- assignment operators,
- four regular expression operators,
- selection statements, if/else,
- iteration statements, while, do/while, two forms of for,
- function definition statements, function,
- the eval and unval operators,
- identifier operators, isset, unset, refof, valof, &, *, push, pop,
- exception management operators, throw,
- type information operators, classof, typeof
- miscellaneous operators, structof, bodyof
- builtin and library functions.

For instance, the following constructs are valid OQL constructs:

for (x in l)

{

if (classof x != "Person")

throw "Person type expected";

if (x->name ~ "^john")

{

ok := true;

break;

}

}

function fib(n) {

if (n < 2)

return n;

return fib(n-1) + fib(n-2);

}

for (n := 0, v := 0; n < 15; n++)

v += fib(n);

function swap(x, y) {

v := *x;

*x := *y;

*y := v;

}

4. LANGUAGE CONCEPTS 7

i := "ii"; j := "jj";

swap(&i, &j);

function get_from(classname, attrname) {

return eval "select x." + attrname + " from " + classname + " x";

}

names := get_from("Person", "name");

These extensions make OQL computationally complete.

Some of the ODMG OQL functionnalities or specificities are not yet implemented:

1. the group by/having operator,

2. the order by operator is more restrictive than in the ODMG specifications,

3. contrary to ODMG OQL, it is necessary to put parenthesis to call a function or method with takes no arguments,

4. contrary to ODMG OQL, the || operator does means string concatenation. It is the logical or operator. This will
be changed in a future version.

4 Language Concepts

The basic entity in OQL is the atom. An atom is the result of the evaluation of any expression. Atoms are manipulated
through expressions.

Although OQL is not fully an expression language as some valid constructs, such as flow controls, are not expressions, the
expression is the basic concept of OQL. The non-expression constructs, such as selection and iteration statements, control
the flow (or evaluation) of expressions. An expression is built from typed operands composed recursively by operators.

OQL is a typed language: each atom has a type. This type can be an OQL builtin type or can be derived from the
schema type declarations.

OQL binds the EyeDB object model by providing a mapping between OQL builtin types and the EyeDB object model
types. As in the EyeDB object model, OQL supports both object entities (with a unique object identifier) and literal
entities (with no identifier). The concept of object/literal is orthogonal to the concept of type, this means that any type
may have object instances and literal instances. For instance, one can have literal or object integers, literal or object
collections. For instance, the following constructs produces a literal integer:

1; // OQL interpreter generates a literal integer

first(select x.age from Person x); // database produces a literal integer

// bound to an atom of type integer

while the followings produce respectively a Person object and a literal collection of Person objects:

first(select x from Person x);

select x from Person x;

An EyeDB object is always bound in OQL to an atom of type oid or of type object. A literal is bound to the corre-
sponding direct type in OQL using a trivial mapping. For instance, a literal entity of the EyeDB type integer is bound
to an OQL atom of the OQL type integer; while an object entity of the EyeDB type Person is bound to an OQL atom
of type oid or object.

We introduce now the OQL builtin types and the way that they are generated. OQL includes 15 builtin types as follows:
- integer
- string
- float
- char
- boolean
- identifier
- set
- bag
- array
- list

8 CONTENTS

- struct
- oid
- object
- null
- nil

Some of these atoms can be expressed as terminals of the OQL grammar - for instance integer, float, string - others
are generated using syntaxic constructions such as function calls or specific constructions - for instance list, bag, struct.

We will introduced first the syntax of the atoms which can be expressed as terminals, then the way to produce non
terminal atoms.

5 Language Syntax

5.1 Terminal Atom Syntax

To express the syntax of terminal atoms, we use the standard regular expression notation.

Integer Atom

Integers are coded on 64 bits.
The syntax for the integer type is one of the followings:

[0-9]+ decimal base
0x[0-9a-fA-F]+ hexadecimal
0[0-7]+ octal

The domain for the integer type is as follows:

Minimal Value Maximal Value

-9223372036854775808 9223372036854775807

A few examples:

13940 // integer expressed in the decimal base

0x273f1 // integer expressed in the hexadecimal base

0x273F1 // integer expressed in the hexadecimal base

0100 // integer expressed in the octal base

Float Atom

The syntax for floating point atoms is one of the following regular expressions:

[0-9]+\.[0-9]+?
[0-9]+?\.[0-9]+
[0-9]+\.[0-9]+?(e|E)[+-]?[0-9]+([fF]|[lL])?
[0-9]+?\.[0-9]+(e|E)[+-]?[0-9]+([fF]|[lL])?

The domain for the float type is as follows:

Minimal Value Maximal Value

4.94065645841246544e-324 1.79769313486231570e+308

A few examples:

1.

1.23

.3

0.3039

1e+10

2.e+112

5. LANGUAGE SYNTAX 9

1.2e-100

.234e-200

.234e-200f

.234e-200F

String Atom

The syntax for the string type is as follows:
\"([^"]|\\\")*\"

The following escape sequences are interpreted:

Escape
Sequence

Name ASCII Name

\a alert BEL

\b backspace BS

\f form feed FF

\n newline NL (LF)

\r carriage return CR

\t horizontal tab HT

\v vertical tab VT

\\ backslash \

\" double quote ”

\’ single quote ’

\ooo octal number \ooo

A few examples:

"hello"

"hello \"world\""

"this is a multi-lines\ntext\n"

"this text contains escape sequences: \007\v\f\n’’

Char Atom

The syntax for the char type is one of the followings:
’ascii character’
’\[0-7+]’
’\(x|X)[0-9a-fA-F+]’
’\a’
’\b’
’\f’
’\n’
’\r’
’\t’
’\v’

A few examples:

’a’

’b’

’\n’

’\a’

’\007’

’\x50’

’\x5F’

Boolean Atom

The syntax for a boolean atom is one of the followings:
true

false

10 CONTENTS

Identifier Atom

The syntax for an identifier atom is as follows:
[a-zA-Z\$ #][a-zA-Z\$ 0-9#]*

This means that an identifier must start whith a letter, a “ ”, a “$” or a “#” which may be followed by letters, dig-
its, “ ”, “$” and “#” characters.

For instance, the following words are some valid identifiers:

a

alpha

beta1

alpha_beta

$a

oql$maxint

oql#2

$

#

_1

Note that identifiers beginning by oql$ or oql# are reserved for special used by the interpreter.

Oid Atom

The syntax for an oid is as following:
[0-9]+:[0-9]+:[0-9]+:oid

Note that oid atoms are not typed directly by the user, but are produced by the database via the OQL interpreter.
The following words are some syntaxically valid atom oids:

123.2.33373:oid

82727272.1.292828282:oid

Object Atom

The syntax for an atom object is as following:
[0-9a-fA-F]+:obj

Note that object atoms are not typed directly by the user, but are produced by OQL interpreter.
The following words are some syntaxically valid atom objects:

38383:obj

ea954:obj

Null Atom

The null atom denotes an unitialized value. Its type depends on the context. It can denote a unitialized integer, float,
char, string or oid.

The syntax for a null atom is one of the followings:
null

NULL

Nil Atom

The nil atom denotes the empty atom.
The syntax for a nil atom is as follows:
nil

5.2 Non Terminal Atom Production

The other atoms - sets, bags, arrays, lists and structs - are non terminal atoms. This means that they cannot be
generated using a simple lexical construct.

5. LANGUAGE SYNTAX 11

List, Set, Bag and Array Atoms

To construct a collection atom - list, set, bag or array -, one may use the function collection() where collection denotes
the collection type, for instance:

set(1, 2, 3)

list(1, "hello", "world")

array(2, 3, list(3893, -2, ’a’), 22)

bag(2, 2, 3, 4, 5, 12)

This is the simple way to construct such atoms, but as any other atoms, a collection atom may be produced by the OQL
interpreter as the evaluation of a complex expression, for instance:

select x from Person x

produces an atom bag of objects.

Struct Atom

The most direct way to construct a struct atom is as follows:
struct({identifier:expr})

For instance:

struct(a: 1)

struct(format: text, s: "this is the text")

struct(name: "john", age: 32, spouse: first(select Person))

5.3 Keywords

Any programming language has its own set of reserved words (keywords) that cannot be used as identifiers. For instance,
the keyword “if” cannot be used as a variable in a C program.
OQL also has its own set of keywords. But OQL is one part among others in the information system: for instance,
there are an Object Model, an Object Definition Language (ODL) and Language bindings. The Object Model does not
introduce any keyword, while ODL has its own set of keywords which are different from the OQL keywords. For instance,
a class can include an attribute whose name is “if” as it is not a ODL keyword. If one wants to access this attribute in
OQL, using for instance the path expression “x.if”, we will get a syntax error. This is not acceptable.
We introduce in OQL (and in ODL) a way to neutralize any keyword: the token “@” used as a prefix keyword neutralizes
the keyword and makes it a valid identifier. For instance, “x.@if”, denotes the attribute “if” of the instance “x”.
More generaly, “@identifier” denotes the identifier “identifier” whether “identifier” is a keyword or not.

OQL introduces the following keywords:

add all append array as

asc bag bodyof break by

char classof contents define delete

desc distinct do element else

empty eval except exists false

float for from function group

having ident if import in

int intersect is isset like

list mod new nil not

oid order pop print push

refof return scopeof select set

string struct structof suppress then

throw to true typeof union

unset unval valof where while

5.4 Comments

In OQL, comments are identical to the C++:

• all characters after the token // until the end of the current line are ignored by the interpreter,

• all characters between the tokens /* and */ are ignored.

12 CONTENTS

For instance:

1 + 2; // this is a comment

a := "hello"; /* this is another

comment */

5.5 Statements

A valid OQL construct is composed of a sequence of statements. Main of the statements are expression statements.

A statement can be one of the following:
- an expression statement,
- a selection statement, if/else,
- an iteration statement, while, do/while, for,
- a function definition statement, function
- a jump statement, break, return
- a compound statement,
- an empty statement.

The OQL expression sub-grammar is very close from the C grammar. The OQL grammar for the flow controls statement
- if/else, while, do/while, for - is identical to the C grammar. The common operators of OQL and C have the same
associativity and precedence.

5.6 Expression Statements

An expression statement is an expression following by a semicolon. Expressions are built from typed operands composed
recursively by operators.

The syntax of an expression statement is as follows:
expr ;

where expr denotes any expression.

There are three main kinds of expressions: atomic expressions, unary expressions and binary expressions. Atomic ex-
pressions are composed of one terminal atom and no operators, unary expressions are composed of one operand and one
operator, binary expressions are composed of two operands and one operator.

We divide the OQL expression family into several semantical sub-families according to their operators as follows:

- atomic expressions,
- arithmetic expressions,
- assignment expressions,
- auto increment & decrement expressions,
- comparison expressions,
- logical expressions,
- conditional lists,
- expression sequences,
- array deferencing,
- identifier expressions,
- path expressions,
- function call,
- method invocation,
- eval/unval operators,
- set expressions,
- object creation,
- object deletion,
- collection expressions,
- exception expressions,
- function definition expressions,
- conversion expressions,
- type information expressions
- query expressions,
- miscellenaous expressions

5. LANGUAGE SYNTAX 13

In the following sub-sections, we introduce all the OQL expression types using the following template presentation:

1. we present first, in an unformal way, the syntax and the semantics of the operators,

2. general formal information is presented in a first table:
- operator(s)
- type
- syntax
- operand types
- functions

3. in an optionnal second table, we present all the valid operand combination and their result type. A comment about
the function performed is added if necessary. This table is skipped in case of the operand type combination is unique
or trivial.

4. in a last table, we introduce a few examples. The examples manipulating database objects use the schema that can
be found in the directory
$EYEDBROOT/examples/common:

// person.odl

enum CivilState {

Lady = 0x10,

Sir = 0x20,

Miss = 0x40

};

class Address {

attribute string street;

attribute string<32> town;

attribute string country;

};

class Person {

attribute string name;

attribute int age;

attribute Address addr;

attribute Address other_addrs[];

attribute CivilState cstate;

attribute Person * spouse inverse Person::spouse;

attribute set<Car *> cars inverse owner;

attribute array<Person *> children;

int change_address(in string street, in string town,

out string oldstreet, out string oldtown);

static int getPersonCount();

index on name;

};

class Car {

attribute string brand;

attribute int num;

Person *owner inverse cars;

};

class Employee extends Person {

attribute long salary;

};

Expression types are gathered so to minimize the number of tables in this document.

14 CONTENTS

5.7 Atomic Literal Expressions

Atomic literal expressions are expressions composed of a single terminal (or token or lexical unit) without any operator.
They are also called primary expressions. These expressions have already been introduced in Section 5.1.

General Information

Operator no operator

Type unary

Syntax terminal atom

Operand Types integer, float, char,

string, boolean,

identifier, null, nil,

oid,

Result Type same type as the operand

Expression Examples

expression result

1 1

2. 12.

’a’ ’a’

"hello" "hello"

alpha value of alpha

true true

83283.1.29292:oid an error is raised in case of
the oid is invalid.
Otherwise the re-
sult is the input oid:
83283.1.29292:oid

5.8 Arithmetic Expressions

Arithmetic expressions gather the expressions used for any arithmetic computation: addition, multiplication, substrac-
tion, division, modulo, shift left and right, bitwise or, bitwise exclusive, bitwise and, bitwise complement. This Section
introduced these operators with a special focus on the additive operator which is a multi-purpose operator.

Additive Expression

The additive operator (i.e. +) is used for arithmetic addition of integers, floating point numbers and characters, and is
also used for string concatenation, list or array concatenation and set or bag union. Its functionality depends on the type
of its operands: it is a polymorphic operator. Note that the choice of its functionality is done at evaluation time, not at
compile time. That means that the functionality of an expression such as x + y is unknown until the evaluation time.
Depending on the dynamic type of the operands x and y, it can be a simple arithmetic addition, a string or list or array
concatenation, a set or bag union or it can raise an error.
When used as a arithmetic operator and when the two operands have not the same type, one of the operands can be
automatically promote to the type of the second one. The promotion mechanism is the same as in the C or C++ languages:
integer may be promoted to float, char may be promoted to float or integer.

General Information

Operator +

Type binary

Syntax expr + expr

Commutative yes

Operand Types integer, float, char, string, list,

bag, set, array

Result Type see following table

5. LANGUAGE SYNTAX 15

Function multi functions according to operands:
arithmetic addition, string concatenation,
list or array concatenation, set or bag
union.

Possible Operand Combinations

first operand type second operand type result type

integer integer integer

integer float float

char char integer

char integer integer

char float float

float float float

string string string string concatenation

list list list list concatenation

array array array array concatenation

set set set set union

bag bag bag bag union

Expression Examples

expression result

1 + 2 3

1 + 2. 3.

2 + 2.3 4.3

’a’ + ’b’ 195

’a’ + 1.2 98.200

"hello" + "world" "helloworld"

list(1, 2, 3) +

list(2, 3, 4)

list(1, 2, 3, 2, 3, 4)

set(1, 2, 3) +

set(2, 3, 4)

set(1, 2, 3, 4)

1 + "hello" raises an error

set(1, 2, 3) +

list(2, 3, 4)

raises an error

Multiplicative, Division and Minus Expressions

Multiplicative, division and minus expression syntax, semantics, associativity and precedence are quite identical to the
corresponding C and C++ expressions. When operands have different types, promotionnal mechanisms are the same as
for the additive operator.

General Information

Operators -

*

/

Type binary

Syntaxes expr - expr
expr * expr
expr / expr

Commutative - : no
* : yes
/ : no

Operand Types integer, float, char

Result Type see following table

16 CONTENTS

Functions - : substract
* : multiply
/ : divide

Possible Operand Combinations

first operand type second operand type result type

integer integer integer

integer float float

integer char integer

char char integer

char integer integer

char float float

float float float

float integer float

float char float

Expression Examples

expression result

1 - 2 -1

3 * 2. 6.

2 * ’a’ 194

’a’ * ’b’ 9506

1 / 2 0

1 / 2. .5000

1. / 2 .5000

1. / 2 .5000

"hello" * "world" raises an error

1 - "hello" raises an error

Shift, Mod, And, Or, XOr Expressions

Shift, modulo, and, or and xor expression syntax, semantics, associativity and precedence are quite identical to the corre-
sponding C and C++ expressions. Operand types must be integer or char and the only possible type promotion is from
char to integer.

General Information

Operators <<

>>

%

&

|

^

Type binary

Syntaxes expr << expr
expr >> expr
expr % expr
expr & expr
expr | expr
expr ^ expr

Commutative << : no
>> : no
% : no
& : yes
| : yes

5. LANGUAGE SYNTAX 17

^ : yes

Operand Types integer, char

Result Type integer

Functions << : left shift
>> : right shift
% : modulo
& : bitwise and
| : bitwise or
^ : bitwise exclusive or

Expression Examples

expression result

1 << 4 16

100 >> 2 25

100 % 13 9

0xf12 & 0xf 2

0xf12 | 0xf 3871

0xf12 ^ 0xf 3869

’b’ % ’9’ 8

2 << 1.2 raises an error

2 % 3.4 raises an error

2.1 % 3 raises an error

Sign Expressions

Sign expressions are the expressions using the unary operators + or -. The expression syntax, semantics, associativity and
precedence are quite identical to the corresponding C and C++ expressions. These unary operators accept only integer,
char and float operands.

General Information

Operators +

-

Type unary

Syntaxes + expr
- expr

Operand Types integer, char, float

Result Type see following table

Functions sign operator

Possible Operand Combinations

operand type result type

integer integer

float float

char integer

Expression Examples

expression result

+12 12

-100 -100

-123.4 -123.4

+’a’ 97

-’a’ -97

18 CONTENTS

+"hello" raises an error

-null" raises an error

Complement Expressions

The complement operator performs a bitwise complement on its operand. The expression syntax, semantics, associativity
and precedence are quite identical to the corresponding C and C++ expressions. This operator accepts only integer and
char operands.

General Information

Operator ~

Type unary

Syntax ~ expr

Operand Types integer, char

Result Type integer

Functions bitwise complement

Expression Examples

expression result

~112 -113

~0 -1

~’a’ -98

~2.3 raises an error

~"hello" raises an error

5.9 Assignment Expressions

The expression syntax, semantics, associativity and precedence are quite identical to the corresponding C and C++ ex-
pressions except that the simple assignment operator in OQL is := instead of = in C or C++. The left operand must be
a left value. A left value is an OQL entity which is assignable: for instance any identifier or a valid path expression.
When the assignment is simple and when the left value is an identifier, no type checking on the right operand is done. For
instance, x := 10 and x := "hello" are always valid expressions. In the case of the left value is a path expression, the
OQL interpreter checks that the type of the second operand matches the expected type of the first one. For instance if p
denotes a Person instance, p->age := 32 is certainly valid while p->age := "hello" raises a type check error.
When the assignment is combined with another operation (for instance, the -= operator), the left operand must be ini-
tialized and the interpreter checks that the left and right operand can be combined through the other operator.

For instance, the following constructs are valid:

a := 10;

a -= 20;

a := "hello";

a += " world";

p := first(select Person);

p.name := "johnny";

first(select Person.age = 0).name := "baby";

while these ones produce errors:

a := "hello";

a -= 20; // raises the error: operation ’string + integer’ is not valid

a := list(1, 2);

a *= 2; // raises the error: operation ’list * integer’ is not valid

unset b;

5. LANGUAGE SYNTAX 19

b += 20; // raises the error: uninitialized identifier ’b’

p := first(select Person);

p.age := "baby"; // raises the error: integer expected, got string

General Information

Operators :=

*=

/=

%=

+=

-=

<<=

>>=

&=

|=

^=

Type binary

Syntaxes lvalue := expr
lvalue *= expr
lvalue /= expr
lvalue %= expr
lvalue += expr
lvalue -= expr
lvalue <<= expr
lvalue >>= expr
lvalue &= expr
lvalue |= expr
lvalue ^= expr

Commutative no

Operand Types leftvalue on the left side and
any type on the right side

Result Type the type of the right operand

Functions perform an operation and
assignment

Expression Examples

expression result

a := 24 24

a += 12 36

a /= 2 18

a ^= 100 118

first(select

Person).age :=

38

38

"hello" := 4 raises an error (i.e. "hello" is not a left-
value)

8 := 5 raises an error (i.e. 8 is not a leftvalue)

unset a; a += 20 raises an error (i.e. uninitialized identi-
fier)

5.10 Auto Increment & Decrement Expressions

The expression syntax, semantics, associativity and precedence are quite identical to the corresponding C and C++ ex-
pressions. The operand must be an initialized left value of type integer, char or float. In case of the operand is a char

atom, the result type is an integer. Otherwise, the result type is the type of the operand.

20 CONTENTS

General Information

Operators ++

--

Type unary

Syntaxes expr --

expr ++

++expr
--expr

Operand Type leftvalue of type integer, char or
float.

Result Type see following table

Functions expr -- : post-decrementation
expr ++ : post-incrementation
++expr : pre-incrementation
--expr : pre-incrementation

Possible Operand Combinations

operand type result type

integer integer

float float

char integer

Expression Examples

expression result

a := 1; a++ 1 initially a equals 1; the result of the
evaluation is 1 but after the evalu-
ation, a equals 2

--a 0

a++ 0 a equals 1 after the evaluation

5.11 Comparison Expressions

The expression syntax, semantics, associativity and precedence are quite identical to the corresponding C and C++
expressions except that the equal operator could be either == or =.

Equal and NotEqual Expressions

Operands may have any type at all. If the type of the operands differ (modulo the type promotion mechanisms for numbers),
the result of the expression operand1 == operand2 is always false while the result of operand1 != operand2 is always true.

General Information

Operators ==

!=

Type binary

Syntaxes expr == expr
expr != expr

Commutative yes

Operand Types any type

Result Type boolean

Functions equal
not equal

When operands are number of different types, an automatic promotion is done to the more precise type.

5. LANGUAGE SYNTAX 21

Expression Examples

expression result

1 == 1 true

1 == 1.0 true

1 != 2 true

1 == 2 false

1 == "hello" false

"hello" == "hello" true

list(1, 2, 3) ==

list(1, 2, 3)

true

set(1, 3, 2) ==

set(1, 2, 3)

true

Less and Greater Expressions

The comparison operators <, <=, > and >= are multi-purpose operators: they are used for integer, floating point num-
ber and character comparison, but also for list or array term-to-term comparison and for set or bag inclusion. Their
functionality depends on the type of its operands: they are polymorphic operators. Note that the choice of the func-
tionality is done at evaluation time, not at compile time. That means that the functionality of an expression such as
x < y is unknown until the evaluation time. Depending on the dynamic type of the operands x and y, it can be an
arithmetic comparison (if x and y are numbers), a alpha-numeric comparison (if x and y are strings), a term-to-term or-
dered collection comparison (if x and y are lists or arrays) or a set or bag inclusion comparison (if x and y are sets or bags).

While arithmetic and alpha-numeric comparisons are trivial and do not need any suplementary explanations, the term-
to-term ordered collection comparisons needs to be detailed.

The general algorithm for this functionnality is as follows:

1. let l1 and l2 two OQL ordered collections, containing respectively l1 cnt and l1 cnt atoms.

2. let op one of the following polymorphic comparison operators: < <= > >=,

3. l1 op l2 is true if and only if all the following conditions are realized:

(a) l1 and l2 must be of the same collection type,

(b) l1 cnt op l2 cnt or l1 cnt equals l2 cnt

(c) for each atom l1[i] with i in [i,l1 cnt], l1[i] op l2[i]

For instance:
list(1, 2) <= list(0, 2) is true

list(1, 2) <= list(3) is false

list(1, 2) <= list(3) is false

list("aaa", 4) < list("bbbb", 8) is true

list("aaa", 4, list(1, 2)) < list("b", 8, list(2, 3)) is true

list(set(2, 4), 3) < list(set(4, 2, 3), 4) is true

list(2, 3) < list("hello", 2) raises an error
list(2, 3) < array(2, 4) raises an error

Note that the fact that l1 <= l2 is false does not implie that l1 > l2 is true. Indeed, list(2, 3) < list(1, 3,

2) and list(1, 3, 2) >= list(2, 3) are false.

General Information

Operators <

<=

>

>=

Type binary

Syntaxes expr < expr
expr <= expr
expr > expr
expr >= expr

22 CONTENTS

Commutative no

Operand Types integer, float, char,

string, list, array,

set, bag

Result Type boolean

Functions the function depends on the
operands:
< : less than or is included
in
<= : less than or equal or is
included in or equal
> : greater than or contains
>= : greater than or equal or
contains or equal

Possible Operand Combinations

first operand type second operand type result type comments

integer, char, float integer, char, float boolean performs an arithmetic comparison

string string boolean performs an alpha-numeric compar-
ison

set set boolean performs an inclusion comparison

bag bag boolean performs an inclusion comparison

set bag boolean performs an inclusion comparison:
the set operand is converted to a
bag

bag set boolean performs an inclusion comparison:
the set operand is converted to a
bag

list list boolean performs a term-to-term polymor-
phic (i.e. numeric, alpha-numeric
or inclusion) comparison

array array boolean performs a term-to-term polymor-
phic comparison

Note that in case of different operand types, an automatic promotion is done to the more precise type.

Expression Examples

expression result

1 < 2 true

1 >= 2 false

2. <= 2 true

"hello" < "world" true

"hello" >= "world" false

list(1, 2) < list(2, 3) true

list(1, 2) < list(0, 3) false

list(1, 2) < list(0, 3, 2) false

list(0, 3, 2) >= list(1, 2) false

list(1, 2) < list(2, 3, 3) true

list(1, 2) < list(0) false

set(1, 2) < set(2, 4, 44) false

set(1, 2) < set(2, 1, 44) true

"hello" >= 3 raises an error

list(1, 2) < array(2, 4, 44) raises an error

set(1, 2) < bag(2, 1, 44) raises an error

5. LANGUAGE SYNTAX 23

Regular Expression Operators

OQL provides the ODMG OQL regular expression operator like plus four other ones. These four extra operators are
based on the regular expression UNIX library. So, the syntax of the regular expression are the same as that used by the
well known UNIX tools grep, sed, and so on. All the regular expression operators takes two string operands: the first
one is the string to compare, the second one is the regular expression. So, these operators are not commutative. These
operators provide the following functionalities:

like : ODMG OQL operator. Returns true if the first operand matches the regular expression.
Otherwise false is returned. The regular expression is am SQL regular expression where,
for instance, % and are wilcard characters.

~ : This operator has the same functionnality as the like operator but the regular expression
has the UNIX syntax.

~ : Returns true if the first operand matches the regular expression in a case insensitive way.
Otherwise false is returned.

!~ : Returns true if the first operand does not match the regular expression.
Otherwise false is returned.

!~~ : Returns true if the first operand does not match the regular expression in a case insensitive
way. Otherwise false is returned.

Note that the operator like uses currently the UNIX form of regular expressions instead of the SQL form. It will become
ODMG/SQL compliant in a next version.

General Information

Operators ~

~~

!~

!~~

like

Type binary

Syntaxes expr ~ expr
expr ~~ expr
expr !~ expr
expr !~~ expr
expr like expr

Commutative no

Operand Types string

Result Type boolean

Functions

~ : matches the regular expression
~ : matches the regular expression,

case insensitive
!~ : does not match the regular expres-

sion
!~~ : does not match the regular expres-

sion, case insensitive
like : matches the regular expression

Expression Examples

expression result

"hello" ~ "LL" false

"hello" ~~ "LL" true

"hello" ~ "^LL" false

"hello" ~ "^h" true

"hello" !~ "^h" false

"hello" ~ ".*ll.*" true

".*ll.*" ~ "hello" false because regular ex-
pression should be on the
right

24 CONTENTS

5.12 Logical Expressions

OQL provide three logical expressions which can take two form each. The logical or operator is || or or. The logical and
operator is && or and. The logical not operator is ! or not.

The expression syntax, semantics, associativity and precedence are quite identical to the corresponding C and C++
expressions. Note that the ODMG operator “||” denotes the string concatenation.
As for C and C++, the OQL interpreter performs a lazy evaluation:

• expr1 || expr2
expr2 is not evaluated if expr1 is evaluated to true.

• expr1 && expr2
expr2 is not evaluated if expr1 is evaluated to false.

General Information

Operators ||

&&

Type unary, binary

Syntaxes expr || expr
expr or expr
expr && expr
expr and expr
! expr
not expr

Operand Type boolean

Result Type boolean

Functions logical or
logical and
logical not

Expression Examples

expression result

true || false true

false || false false

true && false false

1 == 2 || 3 == 4 false

1 == 2 || 3 == 3 true

1 == 2 or 3 == 3 true

1 == 2 || "hello"

== "hello"

true

(1 == 2 || 2 == 2)

&& (a = "hello")

returns true if a equals
”hello”. false otherwise

1 || 3 == 3 raises an error : boolean ex-
pected got integer

!3 raises an error : boolean ex-
pected got integer

!(1 == 1) false

not(1 == 1) false

5.13 Conditional Expression

The unique conditional expression operator is ?:. The expression syntax, semantics, associativity and precedence are quite
identical to the corresponding C and C++ expressions. The first operand must be an boolean and the two others may be
of any type. Contrary to C and C++, the two last operands does not need to be of the same type.

General Information

5. LANGUAGE SYNTAX 25

Operator ?:

Type ternary

Syntaxe expr ? expr : expr

Operand Types first operand is boolean, oth-
ers are any type

Result Type type of the evaluated
operand

Functions conditional evaluation: eval-
uates and returns the second
operand if the first operand
is true; otherwise evalu-
ates and returns the second
operand

Expression Examples

expression result

true ? "hello" : "world" "hello"

true ? 2.3 : "world" 2.3

1+1 == 2 ? (a := 3.1415926535) : nil 3.1515926535

1 ? 3 : nil raises an error :
boolean expected,
got integer.

5.14 Expression Sequences

The expression sequence operator - also called comma sequencing - expression syntax, semantics, associativity and prece-
dence are quite identical to the corresponding C and C++ expressions. This operator , takes two operands: it evaluates
both of them and returns the second one.

General Information

Operator ,

Type binary

Syntaxe expr , expr

Commutative no

Operand Types any type

Result Type type of the second operand

Functions evaluates the first operand, then the sec-
ond one. Returns the evaluation of the
second one.

Expression Examples

expression result

true, "hello" "hello"

a := 2, 4 4 (note that a equals 2)

b := 10, a := b+1 11

5.15 Array Deferencing

OQL provides polymorphic single and range deferencing. The single deferencing is used to get one element in an ordered
collection or a character in a string or one element in a non-collection array. The range deferencing is used to get several
elements.
The deferencing of ordered collections is introduced in more details in Section 5.24.

26 CONTENTS

Single Deferencing

The single deferencing operator takes as its first operand an atom of type string, an indexed (or ordered) collection (list
or array) or a non-collection array. The second operand must be of type integer. Depending on the type of the first
operand, the returned atom is as follows:

1. if the first operand is a string, the returned atom is the #expr character of the string where expr denotes the second
operand. If expr is equal to the length to the string the character ’\000’ is returned. If it greater than the length
the string an out of bounds error is raised.

2. for an ordered collection, the returned atom is the #expr item of the collection. If expr is greater than or is equal
to the size of the collection, an out of bounds error is raised.

3. if the first operand is an non-collection array, the returned atom is the #expr item of the array. If expr is greater
than or is equal to the size of the array, an out of bounds error is raised.

The single deferencing operator may be used as a left value, that means that a single deferencing expression is assignable.
For instance the sequence of statements:

s := "hello";

s[1] := ’E’;

s[4] := ’O’;

set the variable s to "hEllO".

The single deferencing operator may be used everywhere in a path expression. For instance, first(select Person).other addrs[2].street[3]

denotes the character #3 of the street attribute in the #2 other addrs non-collection array attribute of the first Person

instance.

General Information

Operator []

Syntaxe expr [expr]

Type binary

Commutative no

Operand Types first operand: string, indexed collection (list or
array) or non-collection array, second operand:
integer

Result Type char if first operand is a string, otherwise type
of the returned item in the indexed collection or
non-collection array.

Functions [expr] : returns the character (or item in the
indexed collection or in the non-collection array)
number expr

Note this operator may be used in the composition of
a left value.

Expression Examples

expression result

"hello"[0] ’h’

a := "hello"; a[1] ’e’

a[3] l

a[6] raises an er-
ror

a[0] := ’H’ ’H’ a equals "Hello"

list(1, 2, "hello", 4)[3] "hello"

list(1, 2, "hello", 4)[4] raises an er-
ror

first(select

Person).name[2] := ’X’

’X’

5. LANGUAGE SYNTAX 27

Range Deferencing

The range deferencing operators, [:] and [?], takes as their first operand an atom of type string, an indexed (or ordered)
collection (list or array) or a non-collection array. The other operands must be of type integer. The [?] may have
also an unordered collection (set or bag as its first operand.

The operator syntax and semantics are as follows:

• expr [expr1:expr2]

1. if the first operand is a string, the returned atom is a list composed of the characters between the #expr1 and
the #expr2 characters of the string. If expr1 is less than zero or or if expr2 is greater than the length of the
string an out of bounds error is raised.

2. for an ordered collection, the returned atom is a list composed of the items between the #expr1 and the #expr2
items of the collection. If expr1 is less than zero or if i expr2 iss greater than or is equal to the size of the
collection, an out of bounds error is raised.

3. if the first operand is an non-collection array, the returned atom is a list composed of the items between the
#expr1 and the #expr2 items of the array. If expr1 is less than zero or if i expr2 iss greater than or is equal to
the size of the collection, an out of bounds error is raised.

• expr [?]

1. if the first operand is a string, the returned atom is a list composed of all the characters of the string, including
the last character ’\000’.

2. for an ordered or an unordered collection, the returned atom is a list composed of all the items of the collection.
If the collection is a list, the list itself is returned. If the collection is an array, this operator has the same
functionnality as the listtoarray library function.

3. if the first operand is an non-collection array, the returned atom is a list composed of the all the items of the
array.

Contrary to the single deferencing operator, the range deferencing operator cannot be used as a left value.

The range deferencing operators may be used everywhere in a path expression. For instance, first(select Person).children[?].name[?]

denotes the list of all characters of the name attribute in all the children of the first Person instance.

General Information

Operators [:]

[?]

Syntaxes expr [expr :expr]

expr [?]

Type ternary or unary

Operand Types first operand: string or indexed collections (list
or array), second operand and third operand:
integer

Result Type a list of char if first operand is a string, otherwise
a list of returned items in the indexed collection
or non-collection array.

Functions [expr1:expr2] : returns a lits of characters (or
items in collection) indexed from expr1 to expr2
[?] : returns a list of all characters (or items in
collection)

Expression Examples

expression result

"hello"[0:2] list(’h’, ’e’, ’l’)

"hello"[?] list(’h’, ’e’, ’l’, ’l’, ’o’,

’\000’)

list(1, 2, "hello", 4)[2:3] list("hello", 4)

array(1, 2, "hello", 4)[?] list(1, 2, "hello", 4)

28 CONTENTS

first(select Person).name[?] list(’j’, ’o’, ’h’, ’n’,

’\000’)

list(select class.type =

"user")[0:4].name

list("Employee", "Address",

"Person")

5.16 Identifier Expressions

We call an identifier expression an unary or binary expression whose operands must be identifiers. There are height
identifier operators: ::, isset, unset, & (identical to refof), * (identical to valof), scopeof, push and pop.

As all these operators take identifiers as their operands, we skip the second table (operand combinations) while introducing
these operators.

:: Operator

The :: unary/binary operator (called scope operator) is used to define a global or particular scope for a variable.
The unary version of this operator denotes a global scope. For instance, ::alpha denotes the global variable alpha. In
the body of a function, identifiers denote local variables; outside the body of a function identifiers denote global variables,
that means that, in this context, the global scope operator is not mandatory. If one wants to use a global variable in the
body of a function, the global scope operator is mandatory. Refer to the Function Definition Statement Section for more
information about local function variables.

The binary version of this operator denotes a particular scope. For instance, Person::checkName denotes the class
attribute or method of the class Person.

note: class (or static) attributes are not currently well supported by the OQL interpreter. Class attributes are only
supported in some specific query expressions (refer to the Query Expression Section).

General Information

Operator ::

Syntax :: identifier
identifier::identifier

Type unary and binary

Operand Types identifier

Result Type value of the identifier if used as a right value; iden-
tifier reference if used as a left value

Function defines a global or particular scope for the identi-
fier.

Expression Examples

expression result

::a the value of the global vari-
able a

::alpha := 1 sets the value of the global
variable alpha to 1, returns
1

Person::checkName("wayne") calls the class method
checkName in the class
Person

2::alpha raises an error

isset Operator

The isset operator is used to check whether a variable is already set or not. It returns true is the variable is set, false
otherwise.

General Information

5. LANGUAGE SYNTAX 29

Operator isset

Syntax isset identifier

Type unary

Operand Type identifier

Result Type boolean

Function evaluated to true if the identifier is set, false

otherwise

Expression Examples

expression result

isset oql$variables true

isset a returns true if a is set,
false otherwise

isset 1 raises an error

unset Operator

The unset operator is used to unset an variable. It returns the nil atom.

General Information

Operator unset

Syntax unset identifier

Type unary

Operand Type identifier

Result Type nil

Function unset the identifier

Expression Examples

expression result

unset a nil

unset ::a nil

unset 2 raises an error

refof Operator

The & (identical to refof) operator is used to get the reference of an identifier. This operator is essentially used when
one calls a function or method which updates one or more given parameters. For instance, let the function swap(x, y)

which swaps the value of its two parameters. One needs to give the references of the variables that one wants to swap.
For instance:

i := "ii";

j := "jj";

swap(&i, &j);

After the call to swap, the variable i equals jj while the variable j equals ii.
The reverse operator * (described following section) is used in the swap function.

General Information

Operator refof

&

Syntax refof identifier
& identifier

Type unary

30 CONTENTS

Operand Type identifier

Result Type identifier

Function evaluates the expression to the
identifier reference; returned an
identifier atom

Expression Examples

expression result

&alpha alpha

refof alpha alpha

valof Operator

The * (identical to valof) operator is used to get the value of the identifier pointed by a reference. For instance, after the
two following expressions:

alpha := 1;

ralpha := α

*ralpha equals 1.

This operator may be used in the composition of a left value, for instance:

alpha := 1;

ralpha := α

*ralpha := 2; // now, alpha equals 2

*ralpha += 8; // now, alpha equals 10

But this operator is essentially used in the body of functions or methods which update one or more given parameters, for
instance, the function swap described in the previous section is as follows:

function swap(x, y) {

v := *x;

*x := *y;

*y := v;

}

General Information

Operator valof

*

Syntax valof identifier
* identifier

Type unary

Operand Type identifier

Result Type value of the identifier

Function returns the value of the identifier
denotes by the operand

Expression Examples

expression result

*alpha if alpha value is an atom
identifier x, returns the value
of x, otherwise an error is
thrown

x := 12; alpha := &x; *x *x returns 12

5. LANGUAGE SYNTAX 31

scopeof Operator

The scopeof operator returns the string "global" or "local" depending whether the identifier is global or local.

General Information

Operator scopeof

Syntax scopeof identifier

Type unary

Operand Type identifier

Result Type string

Function returns the scope of the identifier.

Expression Examples

expression result

scopeof ::alpha returns "global" for any
alpha if it set; otherwise an
error is thrown

scopeof alpha returns "global" or
"local" depending on
the context.

push Operator

The push operator is used to push an identifier on a new local table. This operator is rarely used.

General Information

Operator push

Syntax push identifier
push identifier := expr

Type unary and binary

Operand Types first operand identifier, optionnal second
operand: any type

Result Type identifier or any type in case of an assignment

Function push the identifier on to the symbol table stack.
An assignment can be performed at the same
time. Returns the identifier or the value of the
expression assignment.

Expression Examples

expression result

push a pushes a on a new local sym-
bol table.

push a := 10 pushes a on a new local
symbol table and assigns its
value to 10

pop Operator

The pop operator is used to pop an identifier from a local table. It is used after a push. For instance:

a := "hello";

a; // a equals "hello"

push a := 10;

a; // a equals 10

32 CONTENTS

pop a;

a; // a equals "hello"

General Information

Operator pop

Syntax pop identifier

Type unary

Operand Type identifier

Result Type the type of the value of the identifier

Function pop the identifier from the symbol table stack

Expression Examples

expression result

pop a returns the value of a if it
is set; otherwise an error is
returned

5.17 Path Expressions

The path expression operator -> (identical to .) is used to navigate from an object and read the right data one needs.
This operator enables us to go inside complex objects, as well as to follow simple relationships. For instance, if p denotes
a Person instance, p.spouse denotes the spouse attribute of this person.
The more complex expression p.spouse.address.street denotes the street in the address of spouse of the person p.
This notation is very intuitive because it looks like the well known C, C++ and Java syntaxes.

The path expression operator may composed a left value, for instance:

p.spouse.name := "mary";

set the name of the spouse of the person p to mary.

This operator may be combined with the array deferencing operators, for instance:

p.spouse.name[2];

p.spouse.name[2] := ’A’;

p.spouse.other_addrs[2].street[3] := ’C’;

p.spouse.children[?];

p.spouse.children[?].name;

The path expression operator may be also used to navigate through struct atom, for instance: (struct(a : 1, b :

"hello")).b returns "hello". Note that because of the precedence of operators, parenthesis are necessary around the
literal struct construct.
Finally, the path operator may be applied to a collection; in this case a collection of the same type of this operand is
returned. For instance:
(select Person).name returns a bag of string.
(select distinct Person).age returns a set of int.
Note that the path expression operator is used frequently in the query expressions as shown in a next section.

General Information

Operators .

->

Syntaxes expr . expr
expr -> expr

Type binary

Operand Types first operand: oid or object, second operand:
identifier

5. LANGUAGE SYNTAX 33

Result Type type of the attribute denoted by the second
operand

Functions returns the attribute value denoted by second
operand of the object denoted by the first operand
The first operand must denote an EyeDB in-
stance (object or literal) of an agregat including
the attribute denoted by the second operand.

Note these two operators are identical

Expression Examples

expression result comments

p->name the value of attribute
name in the object de-
noted by p

p must denote an
EyeDB instance (ob-
ject or literal) of an
agregat including the
attribute name

first(select x Person

x from x.lastname =

"wayne")->lastname

"wayne"

5.18 Function Call

OQL allows one to call an OQL function with or without parameters. The operator for function call is ().
A function call may be the first term of a path expression, for instance: first(select Person)->name.
Contrary to the method invocation, there are no function overloading mechanisms: that means, that one cannot have
differents functions with the same name and a different signature. To take benefit of the overloading mechanisms, one
must use methods.
Note: contrary to the ODMG 3 specifications, one currently needs to use parenthesis to invoke a method even if the
method has no arguments.

General Information

Operator ()

Syntaxe expr (expr list)

Type n-ary

Operand Types first operand: identifier, other operands: any
type

Returned type type of the returned atom by the function call

Functions calls the OQL function denoted by the first
operand using the other operands as arguments.
The number of operands must be equal to the
number of arguments of the OQL function plus
one

Expression Examples

expression result

fact(10) 3628800

fact(fact(3)) 720

toUpper("hello world") "HELLO WORLD"

toUpper("hello") + "world" "HELLOworld"

interval(1, 5) list(1, 2, 3, 4,

5)

swap(&i, &j) nil

first(select

Person).spouse.name

"mary"

34 CONTENTS

5.19 Method Invocation

Instance Method Invocation

OQL allows one to call a instance method with or without parameters. The method can be written in C++ or in OQL.
As in C++, method calls use a combination of the path expression operator and the function call operator.

As in C++ or Java, methods can be overloaded: that means that one can have differents methods with the same name and
a different signature or differents methods with the same name and the same signature in a class hierarchy. The choice of
the method to invoke is done at evaluation time not at compile time. For instance let two methods Person Person::f(in

int, in int) and int Person::f(in float, in string), the method to be invoked in the expression p->f(x, y) is
decided at evaluation time according to the true types of x and y:

p := first(select Person);

x := 1; y := 2;

p->f(x, y); // X::f(in int, in int) is invoked

p->f(x, y)->name; // this is valid because p->f(x, y) returns a Person

x := 1.3; y := "hello";

p->f(x, y); // X::f(in float, in string) is invoked

p->f(x, y)->name; // this is not valid because p->f(x, y) returns an integer

A major contribution of object orientation is the possibility of manipulating polymorphic objects and thanks to the late
binding mechanism to carry out generic actions on the elements of these objects.
For instance, let the two methods void Person::doit(in int) and void Employee::doit(in int), the method to be
invoked in the expression p->doit(x) is decided at evaluation time according to the true type of p:

p := new Person();

p->doit(1); // Person::doit(in int) is invoked

p := new Employee();

p->doit(1); // Employee::doit(in int) is invoked

To invoke a method, the following conditions must be realize:

1. the object or oid on which the method is applied must be an instance of a class, for instance X.

2. the name of the invoked method, the number and the type of arguments must be compatible with an existing method
in the class X,

3. the result type must match the expected type in the expression.

For instance, let the methods int compute(in int, int float) and int compute(in int, in float, in int[], out

string) in the class X. To invoke the first method on an instance of X, one needs to apply the method compute to an
instance of X with one integer and one float, for instance:

x := new X();

x.compute(1, 2.3);

x.compute(a := fact(10), float(fib(10)));

To invoke the second method on an instance of X, one needs to apply the method compute to an instance of X with an
integer, a float, an ordered collection of integer and a reference to a variable, for instance:

x.compute(1, 23.4, list(1, 2, 3, 4), &a);

The following table shows the mapping (which defines the compatibility) between the ODL and the OQL types.

ODL/OQL Mapping

ODL Type OQL Type

in int16 integer

out int16 identifier

inout int16 identifier initialized to an integer

5. LANGUAGE SYNTAX 35

in int32 integer

out int32 identifier

inout int32 identifier initialized to an integer

in int64 integer

out int64 identifier

inout int64 identifier initialized to an integer

in byte char

out byte identifier

inout byte identifier initialized to a char

in char char

out char identifier

inout char identifier initialized to a char

in string string

out string identifier

inout string identifier initialized to a string

in float float

out float identifier

inout float identifier initialized to a float

in oid oid

out oid identifier

inout oid identifier initialized to a oid

in object * oid of any class

out object * identifier

inout object * identifier initialized to an oid of any
class

in X * (X denotes a class instance) oid of class X

out X * (X denotes a class instance) identifier

inout X * (X denotes a class instance) identifier initialized to a oid of class X

in X *[] (X denotes a class instance) ordered collection of oid of class X

out X *[] (X denotes a class instance) identifier

inout X *[] (X denotes a class instance) identifier initialized to an ordered col-
lection of oid of class X

in X[] (X denotes any ODL type) ordered collection of atoms bound to X

out X[] (X denotes any ODL type) identifier

inout X[] (X denotes any ODL type) identifier initialized to an ordered col-
lection of atoms bound to X

Note: contrary to the ODMG 3 specifications, one currently needs to use parenthesis to invoke a method even if the
method has no arguments.

General Information

Operators .

->

Syntaxes expr . expr (expr list)
expr -> expr (expr list)

Type n-ary

Operand Types first operand: oid or object, second operand:
identifier, other operands: any type

Result Type type of the atom returned by the method call

Functions invokes the method denoted by the second
operand applied to the object denoted by the first
operand, using the other operands as arguments.

36 CONTENTS

The first operand must denote an EyeDB in-
stance (object or literal) of an agregat including
the method whose name is the second operand.
The number of arguments and the type of argu-
ments must match one of the methods included
in the class of the object denoted by the first
operand.

Note these two operators are identical

Expression Examples

expression result comments

p->getOid() the value of the oid of
object denoted by p

as getOid() is a na-
tive method of the
class object, each
object can call this
method

img->compute(1, 2.3) the value returned by
the method call

the first operand
must denote an
EyeDB instance
(object or literal) of
an agregat including
the method whose
name is compute

first(select Person.name

= "wayne").getSpouse()

the value returned by
the method call

Class Method Invocation

OQL allows one to call a class method with or without parameters. The method can be written in C++ or in OQL. As
in C++, method calls use a combination of the scope operator and the function call operator. To invoke a class method,
the following conditions must be realize:

1. the name of the invoked method, the number and the type of arguments must be compatible with an existing method
in the class X,

2. the result type must match the expected type in the expression.

The overloading and the late binding mechanisms are the same as for the instance method invocations.

General Information

Operator ::

Syntaxe identifier::identifier(expr list)

Type n-ary

Operand Types first operand: identifier, second operand:
identifier, other operands: any type

Result Type type of the atom returned by the method call

Functions invokes the class method denoted by the second
operand applied to the class denoted by the first
operand, using the other operands as arguments.
The first operand must denote an EyeDB class of
an agregat including the class method whose name
is the second operand. The number of arguments
and the type of arguments must match one of the
class methods included in the class denoted by the
first operand.

5. LANGUAGE SYNTAX 37

Expression Examples

expression result comments

EyeDB::getVersion() 2.8.8 getVersion() is a
native static method
of the class EyeDB

Person::checkName("johnny") the value returned by
the method call

the class method
checkName must
exist in the class
Person and must
take one and only
one input string
argument.

5.20 Eval/Unval Operators

eval Operator

One major feature of OQL is that one can invoke its evaluator using the eval operator. This allows us to build OQL
constructs at runtime and perform their evaluation. This is very useful, for instance, when we want to build a query
expression where the projection or the from reference sets are is unknown. For instance, the following function allows us
to retrieve the values of the attribute attrname in the class classname:

function getValues(classname, attrname) {

cmd := "select x." + attrname + " from " + classname + " x";

return (eval cmd);

}

General Information

Operator eval

Syntaxe eval string

Type unary

Operand Types string

Functions calls the OQL evaluator on the string operand.
The string operand can contain any OQL valid
construct: an expression, a statement or a se-
quence of statements.

Expression Examples

expression result

eval "10" 10

eval "a := 100" result is 100; the variable a is set to
100

eval "a := \"hello\"; b := a + \"world\"" result is "hello world"; the vari-
able a is set to "hello"; the variable
b is set to "hello world"

unval Operator

The unval is the inverse of the unval in the sense that it takes any valid OQL expression and returns the string represen-
tation; the comments and, when not necessary, the spaces and tabulations are skipped. For instance, the construct unval
a := 10 returns "(a:=10)".

General Information

Operator unval

Syntax unval expr

Type unary

38 CONTENTS

Operand Types any type

Functions returns the string expression

Expression Examples

expression result

unval 10 "10"

unval alpha += 10 - beta + 1 "(alpha:=(alpha+((10-beta)+1)))"

eval unval alpha := "hello" returns "hello"; alpha is set to
"hello"

5.21 Set Expressions

OQL allows us to perform the following operations on sets and bags: union, intersection, difference and inclusion. The
operands can be sets or bags. For all these operators, when the operand’s collection types are different (bag and set), the
set is first converted to a bag and the result is a bag.

union Operator

The union operator performs the union of two sets or bags. This operator has the same precedence as the logical or
operator.

General Information

Operator union

Syntax expr union expr

Type binary

Operand Types set or bag

Result Type set if both two operands are of type set, bag

otherwise

Functions returns the union of the two operands.

Expression Examples

expression result

set(1, 2) union set(2, 3) set(1, 2, 3)

set(1, 2) union bag(2, 3) bag(1, 2, 2, 3)

list(1, 2) union bag(2, 3) raises an error

intersect Operator

The intersect operator performs the intersection of two sets or bags. This operator has the same precedence as the
logical and operator.

General Information

Operator intersect

Syntax expr intersect expr

Type binary

Operand Types set or bag

Result Type set if both two operands are of type set, bag

otherwise

Functions returns the intersection of the two operands.

Expression Examples

5. LANGUAGE SYNTAX 39

expression result

set(1, 2) intersect set(2, 3) set(2)

set(1, 2) intersect bag(2, 3) bag(2)

bag(1, 2, 2, 3) intersect bag(2, 3, 2) bag(2, 2, 3)

list(1, 2) intersect bag(2, 3) raises an error

except Operator

The except operator performs the difference between two sets or bags. This operator has the same precedence as the
logical or operator.

General Information

Operator except

Syntax expr except expr

Type binary

Operand Types set or bag

Result Type set if both two operands are of type set, bag

otherwise

Functions returns the difference of the two operands.

Expression Examples

expression result

set(1, 2) except set(2, 3) set(1)

set(1, 2) except bag(2, 3) bag(1)

set(1, 2, 10) except bag(12) bag(1, 2, 10)

list(1, 2) except bag(2, 3) raises an error

Inclusion Operators

The inclusion operators for sets and bags are the comparison operators less than/greater than introduced in a previous
section.

General Information

Operator <

<=

>

>=

Syntax expr < expr
expr <= expr
expr > expr
expr >= expr

Type binary

Operand Types set or bag

Result Type boolean

Functions coll1 < coll2 : returns true if and only if coll1 is
included in coll2 but not equal to coll2
coll1 > coll2 : returns true if and only if coll2 is
included in coll1 and not equal to coll1
coll2 <= coll1 : returns true if and only if coll1 is
included in coll2 or equal to coll2
coll1 >= coll2 : returns true if and only if coll2 is
included in coll1 or equal to coll1

Expression Examples

40 CONTENTS

expression result

set(1, 2) < set(2, 3) false

set(1, 2) < set(2, 3, 1) true

set(1, 2) < bag(2, 3, 1) true

set(1, 2) <= bag(2, 1) false

set(1, 2) >= bag(2, 1) false

5.22 Object Creation

OQL allows us to create persistent or transient objects using the new operator. The general syntax for an object creation
is as follows:

[new] [<[expr]>] class name({path expression : expr })

1. the operator new is optionnal: when the operator is missing, the construct is called an implicit new construct. When
the optionnal following construct “<[expr]>” is not used, there is no functionnal differences between using new or
not.

2. the optionnal construct after the new operator indicates the target location of the object to create:

(a) if this construct is omitted, the object will be a persistent object created in the current default database,

(b) if this construct is under the form <expr>, the OQL interpreter expects for a database object handle as the
result of the expression evaluation. This database will be used as the target location. For instance:

new < oql$db > Person();

will create a Person instance in the database pointed by oql$db, which is in fact the current database.

(c) if this construct is under the form <>, the object will be a transient object.

3. the class name indicates the name of a valid user type in the context of the current database.

4. the path expression indicates an attribute name or a sequence of attributes using the optional array operator, for
instance the following path expressions are valid for an object construction:

name

lastname

addr.street

addr.town[3]

spouse.name

5. the expr behind path expression is any OQL expression as soon as its result type matches the expected type of the
path expression.

6. the order of evaluation of the expressions is in the {path expression : expr} sequence is from left to right.

7. the expression returns the oid of the created object.

For instance:

• new Person() creates a person with all its attributes unitialized,

• Person() creates a person with all its attributes unitialized,

• new Person(name : "john") creates a person with its attribute name initialized to john,

• Person(name : "john") creates a person with its attribute name initialized to john,

• new Person(name : "john", age : 32, spouse : new Person(name : "mary")) creates a person named mary

and a person named john, age 32 whose spouse is the person mary.

The new operator can also be used to create basic type object. Note that in this case, the operator is mandatory. The
syntax for basic type creation is as follows:
new [<[expr]>] basic type (value).

1. where basic type denotes an ODL basic type. It may be one of the following type: int32, int16, int32, char, byte,
float or oid. Note that the type string is not allowed here.

5. LANGUAGE SYNTAX 41

2. the value must be an atomic value of an OQL type mapped from the ODL basic type

For instance:

• new int(2)

• new float(2.3)

• new float(2)

• new char(’a’)

• new oid(first(select Person))

Finally, the new operator can be also used to create collections. The syntax for collection creation is as follows:
[new] [<[expr]>] coll type< class name [, coll name]> ([collection of elements])

1. the new operator is optionnal,

2. where coll type denotes type of the collection: set, bag, array or list,

3. the class name denotes the name of the class of the elements of the collection, for instance Person*, Car*,

4. coll name is an optionnal string which denotes the name of the collection to create,

5. the optionnal collection of elements within parenthesis contains the elements (generally oids) to insert initially in
the created collection,

6. the expression returns the oid of the created collection.

For instance:

• new set<Person *>() creates an empty set of persons,

• new set<Person *>(list(select Person)) creates a set containing all the persons in the database,

• new set<Person *, "all babies">(list(select Person.age < 1)) creates a set named all babies containing
all the persons whose age is less than 1.

• new array<Car *>() creates an empty array of cars.

• new array<int>(list(1, 2, 3, 4) creates an array of integers initially containing 1, 2, 3, 4.

• new set<int *> (list(new int(2), new int(10))) creates a set of integer objects containing initially two integer
objects.

General Information

Operator new

Syntax new [<[expr]>] class name({path expression : expr })

Type n-ary

Operand Types any type

Result Type oid or object

Functions creates an persistent or transient object

Expression Examples

expression result

john := new Person(name: "john",

lastname: "wayne",

age : fib(10));

returns the oid of the created
Person instance

42 CONTENTS

new Person(name: "mary",

lastname: "poppins",

addr.town : "jungle",

addr.street[0] : ’a’,

addr.street[1] : ’b’,

spouse : john,

spouse.age : 72

);

returns the oid of the created
Person instance

5.23 Object Deletion

The delete unary operator is used to delete persistent objects.

General Information

Operator delete

Syntax delete expr

Type unary

Operand Types oid or object

Result Type the operand type

Functions delete a transient or persistent object

Expression Examples

expression result

delete first(select Person) the oid of the deleted Person in-
stance

delete new Person() the oid of the deleted Person in-
stance

for (x in (select Person) delete x the oids of the deleted Person in-
stances

5.24 Collection Expressions

OQL introduces a few operators for object collection manipulation: one of them is the array deferencing operator “[]”
(5.15) that is overloaded for ordered collection manipulation.
Some them are ODMG OQL compliant, the others are EyeDB extensions. Object collections may be persistent or
transient, orderered or not. These operators allows us to make the following kind of operations:

1. gets the contents of a collection: operator contents,

2. get an element at a given position in an ordered collection: operator [] (ODMG compliant),

3. get elements at some given positions in an ordered collection: operators [:] (ODMG compliant) and [?],

4. checks if an element is in a collection: operator in (ODMG compliant),

5. add an element in an unordered collection: operator add/to

6. suppress an element from an unordered collection: operator suppress/from,

7. set or suppress an element in an ordered at a given position: operator [],

8. set or suppress elements in an ordered at a given position: operators [:] and [?],

9. append an element in an ordered collection: operator append/to,

10. checks if a given condition is realized for at least one element in a collection: operator in (ODMG compliant),

11. checks if a given condition is realized for all elements in a collection: operator for/all (ODMG compliant),

5. LANGUAGE SYNTAX 43

12. checks if a given condition is realized for a given number range of elements in a collection: operator extended for.

In all the following examples, the OQL variables p0 denotes the first Person instance in the database: p0 := first(select

Person).

Important Note: although they are reference in the following descriptions of collection operators, the object collec-
tions list are not implemented in the current version of EyeDB.

contents Operator

The contents unary operator is used to give the contents of a given ordered or unordered object collection. It returned
an OQL collection of the same type of the object collection: set, bag, array or list.

General Information

Operator contents

Syntax contents expr

Type unary

Operand Types oid or object collection

Result Type a collection of objects

Functions returns the contents of an object collection

Expression Examples

contents(p0.children) an array of Person oids

select contents(x.children) from Person x returns a list of arrays of Person
oids.

contents(list(1, 2, 3)) raises an error : oid or object

expected, got list

in Operator

The in operator is used to check if a given element is in ordered or unordered object collection.

General Information

Operator in

Syntax expr in expr

Type binary

Operand Types first operand: any type, second operand: oid or object

collection

Result Type boolean

Functions returns true if the first operand belongs to the collection
pointed by the second operand; false otherwise

Expression Examples

first(select Person.name = NULL) in

p0.children

returns true if the first Person in-
stance whose name is unitialized is
in the array of children of the first
Person

first(select Car.brand = "renault") in

p0.cars

returns true if the first Car instance
whose brand equals renault is in
the set of cars of the first Person

add/to Operator

The add/to operator is used to add an element in an unordered collection (set or bag).

44 CONTENTS

General Information

Operator add/to

Syntaxes add expr to expr

Type binary

Operand Types first operand: any type, second operand: oid or object

unorderered collection (set or bag)

Result Type type of the first operand

Functions adds the first operand to the non-indexed collection (i.e.
bag or set) pointed by the second operand; returns the
first operand.

Expression Examples

add new Car(num : 100) to p0.cars returns the created Car oid

add new Person(name : "john") to

p0.children

raises an error : cannot used non

indexed insertion in an array

add new Car() to new set<Car *>() returns the just created car; but we
have lost the oid of the just created
set of cars!

add new Person() to (c := new bag<Person

*>())

returns the just created person; the
created bag has been kept in the
OQL variable c

[] Operator

The polymorphic [] operator is used to set or get an element in an ordered collection (array or list) at a given position:
it can be used in a right or left value.

General Information

Operator []

Syntaxes expr [expr]

Type binary

Operand Types first operand: collection array or list, second operand:
integer

Result Type the type of the element,

Functions gets the element in the collection pointed by the first
operand at the position pointed by the second operarand.
If used at a left value, gets a reference to that element.

Expression Examples

p0.children[0] returns the child at position #0 in
p0.children collection. Returns
nil if there is no child at this posi-
tion

p0.children[0] := Person(name : "john") returns the created Person oid

p0.children[12039] := Person(name :

"henry")

returns the created Person oid.
This expression is valid in any cas
as the collection arrays automati-
cally increased its size

(array<Person *>())[0] := new Car(num :

100)

returns the just created person; but
the created array has been “lost”
as it is not tied to any instance and
as we did not bind it to any OQL
variable

5. LANGUAGE SYNTAX 45

(c := array<Person *>())[0] := new Car(num

: 100)

returns the just created person; the
created array has been kept in the
OQL variable c

p0.cars[1] := Car(num : 100) raises an error : array expected,

got set

[:] Operator

The polymorphic [:] operator is used to set or get some elements in an ordered collection (array or list) at some given
positions: it can be used in a right or left value. When used in a right value, the returned atom is a set of struct with
the two attributes index and value. In each struct element returned, the value of index is the position of the element,
the value of value is the element value. Note the returned struct elements are not ordered according to the element
postions; it is why a set is returned. When used as a left value, the returned atom is a set of references on the elements .

General Information

Operator [:]

Syntaxes expr [expr : expr]

Type ternary

Operand Types first operand: collection array or list, second and third
operands: integer

Result Type the type of the element,

Functions gets the elements in the collection pointed by the first
operand at the position range pointed by the second and
third operarands. If used at a left value, gets references
to that elements.

Expression Examples

p0.children[0:1] returns a set of struct including
the children and the position of
the children position #0 and #1 in
the p0.children collection. For in-
stance: set(struct(index : 0,

value : 3874.33.293847:oid),

struct(index : 1, value :

2938.33.1928394:oid))

Returns nil if there is no child at these positions

p0.children[0:4] := Person(name : "john") Sets all the children at the position
#0 to #4 to a new Person instance.

returns the created Person oid

p0.children[12000:12039] := Person(name :

"henry")

returns the created Person oid.
This expression is valid in any cas
as the collection arrays automati-
cally increased its size

(array<Person *>(list(Person())))[0] returns the just created person
within the just created array. But
the array is “lost” as it is not tied
to any instance and as we did not
bind it to any OQL variable

(x := array<Person *>(list(Person())))[0] returns the just created person; the
created array has been kept in the
OQL variable c

[?] Operator

The polymorphic [?] operator is used to set or get all the elements in an ordered collection (array or list). It can be
used in a right or left value. When used in a right value, the returned atom is a set of struct with the two attributes
index and value. In each struct element returned, the value of index is the position of the element, the value of value
is the element value. Note the returned struct elements are not ordered according to the element postions; it is why a

46 CONTENTS

set is returned.
When used as a left value, the returned atom is a set of references on the elements .

General Information

Operator [?]

Syntaxes expr [?]

Type unary

Operand Type collection array or list,

Result Type a set of struct or a set of references

Functions gets all the elements in the collection pointed by the first
operand If used at a left value, gets references to that
elements.

Expression Examples

p0.children[?] returns a set of struct in-
cluding the children and the
position of all the children in the
p0.children collection. For in-
stance: set(struct(index : 0,

value : 3874.33.293847:oid),

struct(index : 1, value :

2938.33.1928394:oid))

Returns nil if the collection is empty

p0.children[?] := Person(name : "john") Sets all the children to a new
Person instance.

returns the created Person oid

(array<Person *>(list(Person(),

Person())))[?]

returns a set of struct including
the just created Person instances in
the just created array.

append/to Operator

The append/to operator is used to append an element to an ordered collection (list or array).

General Information

Operator append

Syntaxes append expr to expr

Type binary

Operand Types first operand: any type, second operand: oid or object

denoting an ordered collection

Result Type any type

Functions appends the element denoted by the first operand to the
indexed collection (i.e. list or array) denoted by the sec-
ond operand.

Expression Examples

append Person() to p0.children the created Person instance

append Car()to p0.cars raises an error : array or list

expected, got set<Person*>

suppress/from Operator

The suppress/from operator is used to suppress an element from an ordered collection (set or bag).

5. LANGUAGE SYNTAX 47

General Information

Operator suppress/from

Syntaxes suppress expr from expr

Type binary

Operand Types first operand: any type, second operand: oid or object

collection

Result Type type of the first operand

Functions suppress the first operand from the non-indexed collec-
tion (i.e. bag or set) pointed by the second operand;
returns the first operand.

Expression Examples

suppress (select Car.num = 1000) from

p0.cars

the suppressed car if it was found in
the collection; otherwise, raises an
error

suppress new Car() from p.cars raises an error : item

’71238.13.3959935:oid’ not

found in collection

suppress p0 from p0.children raises an error : cannot used

non indexed suppression in an

array

empty Operator

The empty operator is used to empty an ordered or an unordered collection.

General Information

Operator empty

Syntax empty expr

Type unary

Operand Types oid or object collection

Result Type nil

Functions empty the collection pointed by the operand

Expression Examples

empty(first (select Person).children) nil

empty(first (select Person).cars) nil

empty new set<Car *>(list(new Car())) nil; this expression creates a col-
lection of Car containing initially a
new Car, and empty it!

in Operator

The in operator is used to check if a given condition is realized for at least one element in an ordered or unordered collection.

General Information

Operator in

Syntax identifier in expr : expr

Type ternary

Operand Types first operand: identifier, second operand: oid or
object collection, third operand: boolean

Result Type boolean

48 CONTENTS

Functions returns true if it exists in the collection pointed by the
second operand an element for which the third operand
is evaluated to true.

Expression Examples

x in p0.children: x.name = "mary" true or false

x in p0.cars: x.num < 100 and x.num >= 90 true or false

for Operator

The for/all operator is used to check if a given condition is realized for all elements in an ordered or unordered collection.
This operator is ODMG compliant.

General Information

Operator for/all

Syntaxes for all identifier in expr : expr

Type ternary

Operand Types first operand: identifier, second operand: oid or
object collection, third operand: boolean

Result Type boolean

Functions returns true if for all items contained in the collection
pointed by the second operand the third operand is eval-
uated to true.

Expression Examples

for all x in p0.children: x.name ==

"john"

true or false

for all x in p0.cars: x.num % 10 true or false

The for/cardinality operator is used to check if a given condition is realized for a given number range of elements in
an orderer or unordered collection. Note that this operator is the generalisation of the in and for/all operators:
for <0:$> is equivalent to in

for <$> is equivalent to for all

General Information

Operator forcardinality

Syntaxes for < expr : expr > identifier in expr : expr
for < expr > identifier in expr : expr

Type 5-ary

Operand Types first and optional second operands: integer or $, where
$ denotes the collection cardinality, third operand: oid

or object, fourth operand: identifier, fifth operand:
boolean

Result Type boolean

Functions returns true if the number of items in the collection
pointed by the third operand for which the third operand
is evaluated to true is in the interval [first operand, sec-
ond operand].

5. LANGUAGE SYNTAX 49

Expression Examples

for <0:4> x in p0.children: x.name ==

"john"

true if at most 4 children have their
name equals to john

for <4> x in p0.children: x.name ==

"john"

true if one an only one children
have its name equals to john

for <0:$> x in p0.cars: x.num = 10 equivalent to in

for <$> x in p0.cars: x.num = 10 equivalent to for/all

5.25 Exception Expressions

Currently, EyeDB OQL does not provide full support for exception management as there is no try/catch operator.
Nevertheless, the throw operator allows us to raise an error message, for instance:

if (!check(p))

throw "variable p is not correct".

The throw operator stops the current thread of statements and returns the error message at the uppest level. In the
following code:

a := 1;

throw "this is an error";

b := 2;

the variable a will be assigned to 1, but the variable b will not be assigned to 2 as the throw expression deroutes the
normal thread of statements. The throw operator is often used in the body of functions,

General Information

Operator throw

Syntax throw expr

Type unary

Operand Type string

Result Type nil

Functions raises an error message

Expression Examples

throw "error message" nil

throw "error #1: " + msg nil

5.26 Function Definition Expressions

As introduced previously, OQL supports functions. There are two types of functions definition syntax: function definition
expression and function definition statements. The first ones, exposed in this section, are more restrictive than the second
ones, as their definition can contain only one expression. The second ones contain an unbounded sequence of statements.
The function definition expressions are ODMG compatible and are called Named Query Definition in the ODMG standard.
To define such a function, one must use the operator define/as. The general syntax for a definition function expression
is:

define identifier [(arglist)] as expr.

For instance:

define div2(x) as x/2;

div2(10); // returns 5

define pimul(x) as x * 3.1415926535;

pimul(23); // returns 72.256631

define getOnePerson(name) as first(select Person.name = name);

getOnePerson("john"); // returns an oid or nil

50 CONTENTS

As the last operand of the define/as operator is any OQL expression, it can be a sequence of expressions by using the
comma sequencing operator. Therefore, the following construct is valid:

define getit(age) as ::getit_call++,

list_of_persons := select Person.age >= age,

(count(list_of_persons) > 0 ? list_of_persons[0] : nil);

getit(10); // returns the first Person whose age is greater or equal to

10, or nil

getit_call; // equals 1

list_of_persons; // raises an error: uninitialized identifier ’list_of_persons

getit(20);

getit_call; // equals 2

Several comments about this code:

1. ::getit call denotes a global variable, while list of persons denotes a variable local to the function: the variable
scoping has previously been introduced in the identifier expressions, and will be explained again in the function
definition statements Section.

2. as there are no iteration expression (for instance a for or while expression) and as a function definition expression
can contain only one expression, one cannot use a function definition expression with iteration statements. To use
an iteration statement, one needs to use a function definition statement.

3. when one needs to define a function with a sequence of expressions, it may be easier and more readable to use
a function definition statement instead of a function definition expression. The statement version of the previous
function is:

function getit(age) {

::getit_call++;

list_of_persons := select Person.age >= age;

if (count(list_of_persons))

return list_of_persons[0];

}

which is - for C, C++ or Java programmers - a more natural construct.

Finally, the function definition allows us for recursive definitions, for instance:

define fib(n) as (n < 2 ? n : fib(n-2) + fib(n-1));

fib(10); // returns 55

General Information

Operator define/as

Syntax define identifier [arglist] as expr

Type n-ary

Operand Type first operand: identifier, last operand: any type, other
operands: identifier

Result Type identifier

Functions defines a function

Expression Examples

define Persons as select Person Persons

define fact(n) as (n < 2 ? n : n *

fact(n-1))

fact

5. LANGUAGE SYNTAX 51

5.27 Conversion Expressions

The conversion unary operators string, int, char, float, oid and ident allows us to make the following conversions:

Operator From To Returned Atom

string any type string the string representation of the operand

int int int the int operand
char int the operand casted to an int

float int the operand casted to an int

string int the operand converted to an int

char char char the char operand
int char the operand casted to a char

float textttchar the operand casted to a char

string char the operand converted to a char

float float float the float operand
char float the operand casted to a float

int float the operand casted to a float

string float the operand converted to a float

oid oid oid the oid operand
string oid the string operand converted to an oid

ident ident ident the ident operand
string ident the string operand converted to an ident

These operators are used to perform an explicit conversion such as convert the string "123" to the integer 123, or
to perform an explicit cast for numbers such as casting the integer 10 to the float 10.0. These operators evaluate first
their operand before performing the conversion. If the operand type is valid, no error is raised even if its format is not
valid, for instance: int "alpha" returns 0, while oid "aoaoai" returns NULL. Note that because of the precedence of these
operators, parenthesis are necessary to make a conversion of a non-primary operand. For instance, string 1+2 is not
valid: you should use string (1+2).

string operator

The string operator evaluates its operand and returns its string representation.

General Information

Operator string

Syntax string expr

Type unary

Operand Type any type

Result Type string

Function returns the string representation of any atom

Expression Examples

string 123.3 "1203.300000"

string ’a’ "a"

string first(select Person) "71211.13.1486847:oid"

string &alpha "::alpha"

string list(1, 2, 3+2) "list(1, 2, 5)"

string (list("hello", 30) + list(10)) "list("hello", 30, 10)"

string (1+3) "4"

string 1+3 raises an error

int operator

The int operator evaluates its operand and converts or casts it to an integer.
If the operand is the string, it converts it using the atoi C function. If the string is not a valid integer, it returns a 0.
If the operand is a char or float, it casts it to an integer.
If the operand is an integer, it returns it.

52 CONTENTS

General Information

Operator int

Syntax int expr

Type unary

Operand Type int, char, float or string

Result Type int

Function returns the integer conversion or cast of the operand

Expression Examples

int 123.3 123

int 12 12

int ’a’ 97

int "123" 123

int ("123" + "12") 12312

int alpha the value of alpha converted or
casted to an integer

int list(1, 2, 3) raises an error

char operator

The char operator evaluates its operand and converts or casts it to a char.
If the operand is the string of length one, it returns the character of this string. If the string has several characters, it
returns a ’\000.
If the operand is a integer or float, it casts it to a character.
If the operand is a character integer, it returns it.

General Information

Operator char

Syntax char expr

Type unary

Operand Type int, char, float or string

Result Type char

Function returns the character conversion or cast of the operand

Expression Examples

char 123.3 {

char ’a’ ’a’

char alpha the value of alpha converted or
casted to a character

char "a" ’a’

char "hello" ’^@’

char list(1, 2, 3) raises an error

float operator

The float operator evaluates its operand and converts or casts it to a float.
If the operand is the string, it converts it using the atof C function. If the string is not a valid float, it returns a 0.0.
If the operand is a integer or float, it casts it to a float.
If the operand is a float, it returns it.

General Information

Operator float

5. LANGUAGE SYNTAX 53

Syntax float expr

Type unary

Operand Type int, char, float or string

Result Type float

Function returns the float conversion or cast of the operand

Expression Examples

float 123.0 123.0

float 123.3 123.3

float ’a’ 97.000

float "123.0000000" 123.0

float ("123." + "12") 123.12

float "hello" 0.0

float alpha the value of alpha converted or
casted to a float

float list(1, 2, 3) raises an error

oid operator

The oid operator evaluates its string operand and returns the corresponding oid. If the string does not denote a valid oid,
the NULL oid is returned.
If the operand is an oid, it returns it.

General Information

Operator oid

Syntax oid expr

Type unary

Operand Type oid or string

Result Type oid

Function returns the oid denoted by the string operand

Expression Examples

oid "234.34.33:oid" 234.34.33:oid

oid 234.34.33:oid 234.34.33:oid

oid first(select Person) returns the first person oid

oid ’a’ raises an error

ident operator

The ident operator evaluates its string operand and returns the corresponding identifier. If the operand is an identifier,
it returns it.

General Information

Operator ident

Syntax ident expr

Type unary

Operand Type ident or string

Result Type string

Function returns the identifier denoted by the string operand

54 CONTENTS

Expression Examples

ident "alpha" alpha

ident "alpha#1x" alpha#1x

ident "alpha" := 123 123, alpha has been assigned to 123

valof &(ident "alpha") 123

ident ’a’ raises an error

5.28 Type Information Expressions

OQL provides two type information unary operators: typeof and classof. The first one takes any operand type, while
the second one takes an oid or an object operand. Note that because of the precedence of these operators, parenthesis are
necessary to get type information about a non-primary operand. For instance, typeof 1+2 is not valid: you should use
typeof (1+2).

typeof operator

The typeof operator is used to get the type of any OQL atom. It evaluates its operand and returns the string type of its
operand. For instance: typeof 1 returns "int" while typeof "hello" returns "string".

General Information

Operator typeof

Syntax typeof expr

Type unary

Operand Type any type

Result Type string

Function returns the type of the atom

Expression Examples

typeof "alpha" "string"

typeof (1+20.) "float"

typeof list(1, 2, 3) "list"

typeof first(select Person) "oid"

typeof 1+3049 raises an error

typeof alpha type of the value of alpha

typeof &alpha ident

classof operator

typeof operator

The classof operator is used to get the class of any oid or object. It evaluates its operand and returns the string class of
its operand. For instance: classof first(select Person) returns "Person" while typeof new Car() returns "Car".

General Information

Operator classof

Syntax classof expr

Type unary

Operand Type oid or object

Result Type string

Function returns the class of the operand

Expression Examples

5. LANGUAGE SYNTAX 55

classof first(select class) "basic class"

classof (c := new Car(num : 10)) "Car"

classof NULL ""

classof first(select Person).spouse "Person" or NULL

classof 1 raises an error

5.29 Query Expressions

The select operator is used to perform queries in a database. The general syntax of this operator is as follows:

select [distinct] projection [from fromList [where predicat] [order by orderExprList [asc|desc]]

1. distinct means that duplicates must be eliminated,

2. projection is an expression using the variables defined in the fromList,

3. fromList is a sequence of comma-separated items under one of the following forms:
var in expr
expr as var
expr var

where expr is an expression of type collection or is a class name, and var is the name of a variable.

4. predicat is a boolean expression using the variables defined in the fromList,

5. orderExprList is a comma-separated list of sortable expressions (i.e. atomic type).

6. asc means that the order should be performed in an ascendant way (the default) and desc means the inverse.

ODMG vs. EyeDB OQL Query Expressions

As explained in the Section OQL vs. ODMG 3 OQL, there are a few differences between ODMG OQL and EyeDB OQL
query expressions:

• the having/group clause is not supported in the current implementation.

• in the current implementation, one cannot use implicit from clause (i.e. from clause without variables). ODMG
OQL supports constructs such as: from Person without any variable. This implementation does not.

• contrary to ODMG OQL, the from clause is optionnal, A select expression which does not use the from is called
an implicit select expression.

• in a from clause such as “x in expr”, “expr” can be the name of a class. In this case, the interpreter understand
this as the extent of this class. ODMG OQL does not support that.

• the SQL specific agregate operators min(*), max(*), count(*), sum(*) and avg(*) are not supported

• the order by clause is more restrictive than in the ODMG OQL specifications (see below).

• the select * is not supported in the current implementation.

The general select syntax

Rather than introducing the select operator in a formal way by using a lot mathematical symbols, we introduce it first,
in an unformal way, and then, through query examples.

The unformal description of the query process is as follows:

1. The from clause determine the sets of objects on which the query will be applied. For instance, in the from clause,
“x in Person, y in x.children”, the sets on which the query will be applied are all the Person instances bound
to the variable x and the children of these instances, bound to the variable y.

2. These sets of objects are filtered by retaining only the objects that satisfy the predicat in the where clause. These
result objects are gathered into a bag. If no where clause is there, all objects are retained.

3. If an order by clause is present, a sort is performed using to the following process:

(a) each order expression must be of a sortable type: number (int, char or float) or string. If not, an error is
raised.

56 CONTENTS

(b) the bag is ordered into a list according to the first order expression. Then identical atoms are ordered again
using the second order expression and so on.

(c) there is a restriction in the current implementation: each expression in the orderExprList must be present in
the projection expression. If not present, an error is raised.

4. The projection expression is evaluated for each object in the collection and the results of these evaluations are
gathered into a bag.

5. If the keyword distinct is there, the eventual duplicates are eliminated.

6. Finally, if the order by clause is present, the result bag is converted to a list; if the distinct keyword is there
without an order by, the bag is converted to a set; and if neither order by nor distinct are used, we get a bag.

The following table presents several examples:

Simple select/from Examples

select x from Person x

returns a bag containing all the Person oids in the database

select x.name from Person x

returns a bag containing the name of every Person instance in the database

select struct(name: x.name, age: x.age) from Person x

returns a bag containing struct elements including the name and age of every Person

instance in the database

select list(x, x.name) from Person x where x.name ~ "h"

returns a bag of list elements containing the oid and the name of every Person

instances whose name matches the regular expression "h"

select list(x, x.name) from Person x where x.name ~ "h" order by x.name

same as previous example, but the result is a list ordered by the name of the persons

select x from Person x where x.spouse.name = "john" or x.age < 10

returns a bag of Person instances whose spouse name is equal to "john" or the age
is less than 10

select x from Person x order by x.name

current implementation restriction: raises an error : x.name not found in

projection

Arrays and collections in query expressions

OQL provide supports for performing direct queries through non-collection array and collection attributes without explicit
joins. To perform such queries, one must use the operators [], [?] or [:]. All the operators may be used for non-collection
arrays. For collections (list, set, bag and array), only the operator [?] is valid.
The operator [] denotes an element in a non-collection array.
The operator [:] denotes a range of elements in a non-collection array.
The operator [?] denotes all elements in a non-collection array or in a collection. The following table presents several
examples:

Array and Collection based Query Examples

select x.name from Person x where x.name[0] = ’j’

returns all the Person instances whose name begins with a ’j’

select x from Person x where x.other addrs[0].street ~~ "par."

returns all the Person instances whose first other addrs street matches the regular
expression "par."

select x from Person x where x.other addrs[?].street ~~ "par.."

returns all the Person instances whose any other addrs street matches the regular
expression "par.."

select x from Person x where x.other addrs[1:3].street ~~ "par.."

returns all the Person instances whose the first, second or third other addrs street
matches the regular expression "par.."

select x from Person x where x.children[?].name = "johnny"

5. LANGUAGE SYNTAX 57

returns all the persons whose one of its children is called "johnny"

select x from Person x where x.cars[?].num < 100 or x.children[?].name =

"mary"

returns all the persons whose one of its cars has a number less than 100 or a child
called "mary"

select x from Person x where x.children[1].name = "johnny"

although the children is a collection array, an error is raised. This is a current
limitation of the implementation that will disapear soon

The Implicit select syntax

An implicit select expression is a select expression with neither a from nor an explicit where clause. In fact, the where

clause may be included in the projection expression.
This particular syntax has the advantage to be more compact and more simple than the general syntax, but some queries
cannot be performed:

1. queries performing an explicit join,

2. queries having or or and in their where clause.

The following table presents several examples:

Simple Implicit select Examples

select 1

returns 1

select Person

returns a bag containing all Person instances in the database

select Person.name

returns a bag containing the name of every Person instances in the database

select Person.name = "john"

returns a bag containing the oids of every Person instances whose name is equal to
"john"

(select distinct Person.name = "john").age

returns a set containing the age of every Person instances whose name is equal to
"john"

select Person.name = "john" or Person.age = 10

raises an error : use select/from/where clause

select Person.name order by Person.name

returns a list containing of the sorted names of all Person instances

Querying the schema

As every abstraction is an object, one can perform queries on the schema and classes. For instance, to get the oids of all
the existing classes in a schema:
select schema which is equivalent to select class.
In the EyeDB object model, the class class has the following native attributes (some are inherited from the object

class):

1. class (inherited from object) is the class of this class,

2. protection (inherited from object) is the protection object of this class,

3. type is the type of the class: "system" or "user".

4. name is the name of this class,

5. parent is the parent class of this class,

6. extent is the extent collection of this class: contains all the object instances of this class,

7. components is the collection of components of this class: contains the constraints, the methods, the triggers, the
index.

Queries can be performed according to one or more of the previous attributes.

58 CONTENTS

Query Schema Examples

select class.name = "Person"

returns a bag containing the class whose name is "Person"

select class.type = "user"

returns all the user classes

select x from class x where x.name ~ "P" and x.type = "user"

returns the user classes whose name matches the given regular expression

select class.parent.name = "Person"

returns a bag containing the sub-classes of the class Person

How queries are optimized?

EyeDB queries implementation make an heavy use of index. Index may be used as terminal index or as non-terminal
index: terminal index are those used at the end of a path expression, and the other are those used inside a path expression.

For instance, assuming that each attribute in our schema is indexed, the query select Person.name = "john" uses
the index on the attribute name as a terminal index.

The query select Person.spouse.age < 23 uses the index on the attribute age as a terminal index, and the index
on the indirect attribute spouse as a non-terminal index, while the query select Person.spouse = 6252.3.48474:oid

uses the index on the spouse attribute as a terminal index.

The query select Person.children[?].spouse.name = "mary" uses the index of the attributes name, spouse and of
the literal collection attribute children.

The queries with a where clause containing logical and constructs are optimized so to take advantage of the index.
For instance, assuming that there is an index on the name attribute and no index on the age attribute, the query select

x from Person x where x.age = 100 and x.name = "john" will perform first the query on the name attribute and then
filter the result according to the given predicat on the age attribute.
If the two expressions around the logical and operator have an index or if none of the two expression has a index, the
interpreter performs first the left part and then the second part. So, in this case, the order of the two expressions around
the and is important.

Finally, the query select Person.name reads directly the index of the name attribute, instead of reading the name of
each Person instance.

Nevertheless, currently, there are some constructs that the OQL interpreter does not interpret cleverly and where in-
dex are not used. This is unfortanely the case of the join constructs such as:
select x from Person x, x.spouse y where y.name = "mary".
This construct will not make use of the index on the spouse attribute (but it will use the index of the name attribute).
Fortunately, in a lot of cases, join queries may be replaced by a path expression query, for instance:
select x from Person x where x.spouse.name = "mary" is the alternate form the previous join query.

This alternate form (path-expression oriented) is the preferred one, because:
- it is more intuitive,
- it is more object oriented (please forget relationnal!),
- it is more compact,
- it uses index properly.

Of course, the last reason is not a good reason as a proper query implementation should use index whatever the used
syntax. The implementation will be improved in a next version.

Note that query optimisations are fragile and do not believe that the OQL interpreter knows your data better than
you. So, the two following simple rules should be applied:

1. when path expression oriented queries are enough, do not use join constructs,

2. in a and expression within a where clause, put the expression which denotes the most little set of instances on the
left side of the and. In some particular cases, the OQL interpreter knows how to optimize the and, but in most of
the cases, it does not.

5. LANGUAGE SYNTAX 59

Some experimental hints can be added to an and expression in the where clause to help the interpreter to do the things
better, but there are currentlty too much experimental to be documented here.

5.30 Miscellenaous Expressions

A few OQL operators cannot be easily classified in one of the previous categories. We choose to classify them in the
miscellenaous operators. These operators are: bodyof, structof, [!] and import.

bodyof operator

The bodyof operaror is used to get the body of an OQL function. For instance, let the function fib: define fib(n) as (n

< 2 ? n : fib(n-2) + fib(n-1)). The expression bodyof fib will return: "fib(n) ((n<2)?n:(fib((n-2))+fib((n-1))))".
This operator could be applied to expression-functions (i.e. functions defined with the define/as operator) or statement-
functions (i.e. functions defined with the function operator).

General Information

Operator bodyof

Syntax classof expr

Type unary

Operand Type ident denoting a function

Result Type string

Function returns the body of the function

Expression Examples

bodyof is int "is int(x) ((typeof x)=="integer")"

bodyof first "first(l) { if (((!is list(l))&&(!is array(l))))

return l; start:=0; f:=nil; for (x in l) if

((start==0)) { start:=1; f:=x; break; }; ; return

f; }"

bodyof 1 raises an error

structof operator

The structof is used to get the meta-type of a struct atom. The meta-type of a struct atom is the list of the attributes
of this struct. For instance, the meta-type of struct(a : 1, b : "hello") is the list composed of the two attribute
a and b. The following expression structof struct(a : 1, b : "hello") returns list("a", "b").

General Information

Operator structof

Syntax structof expr

Type unary

Operand Type struct

Result Type a list of strings

Function returns the meta-type of the operand

Expression Examples

structof struct(alpha : 1, beta : 2) list("alpha", "beta")

structof first(select struct(x:

x.firstname) from Person x)

list("x")

structof 1 raises an error

[!] operator

The [!] is used to get the length (or size) of an ordered or unordered collection, a string or a struct. For instance,
"hello"[!] returns 5, while list(1, 2, 3)[!] returns 3. Note that this operator is far more efficient than the strlen

60 CONTENTS

library function.

General Information

Operator [!]

Syntax expr [!]

Type unary

Operand Type string, collection or struct

Result Type a int

Function returns length of the operand

Expression Examples

(select Person)[!] the number of person in-
stances

(struct(a: 1, b:2, c: "hello"))[!] 3

("hello"+"world")[!] 10

"hello"+"world"[!] raises an error

import operator

The import operator is used to import an OQL file in the current OQL session. Its operand is a string which denote the
absolute path (i.e. beginning with a /) or relative path (i.e. not beginning with a /) of the file to import. When the path
is relative, the OQL interpreter will look in every directories pointed by the EyeDB configuration variable oqlpath. By
default, oqlpath is equal to %root%/etc/oql. If the file name has no .oql extension, the OQL interpreter will automati-
cally adds one.

General Information

Operator import

Syntax import expr

Type unary

Operand Type string

Result Type a string

Function import the file

Expression Examples

import "stdlib" "/usr/local/eyedb/etc/so/stdlib.oql"

import "roudoudou" raises an error : cannot find file ’roudoudou’

5.31 Selection Statements

The selection statement is based on the if/else constructs.

Syntax: if (cond expr) statement1 [else statement2]
where cond expr is a boolean expression, and statement1 and statement2 may be any statement: an expression statement,
an iteration statement, a compound statement, a selection statement, a function definition statement, a jump statement
or an empty statement.

Semantics: if the boolean expression cond expr is evaluated to true, the statement statement1 is executed. Other-
wise, if an else part is there, the statement statement2 is executed. The statements 1 and 2 may be any statement: an
expression statement, iteration statement, compound statement, selection statement, function definition statement, jump
statement or empty statement.
Note that a selection statement does not return any atom

The following table presents several examples of if/else statements:

5. LANGUAGE SYNTAX 61

if/else Statement Examples

if (true) a := 1;

the variable a is assigned to 1

if (1) b := 2;

an error is raised: boolean expected for condition

if (check(10) > 54) {a := 1; b := 2;} else {c := 2; d := 2}
here compound statements are used, because several expression statements need to
be executed

if ((check(10) > 54 || alpha < 2) && beta > 2.3) {callme(2);}
use of a composite conditional expression

if (a == 1) b := 2; else if (b == 3) {c := 2; return 4;} else if

(check(1)) return 2; else return 3;

selection statements are combined

5.32 Iteration Statements

The iteration statements are based on the following constructs:

• while

• do/while

• for C, C++, Java form

• for collection form

while statement

Syntax: while (cond expr) statement
where cond expr is a boolean expression, and statement any statement: an expression statement, an iteration statement,
a compound statement, a selection statement, a function definition statement, a jump statement or an empty statement.

Semantics: The statement is executed while the boolean expression cond expr is evaluated to true. Note that a while

statement does not return any atom

The following table presents several examples of while statements:

while Statement Examples

while (true) a++;

a is increment definitively!

while (n--) a++;

an error is raised: boolean expected, got integer

while (n-- > 0) a++;

this is better

while (n++ <= 100 || stop) {if (!perform(a++)) break; check(a);}
note the usage of a compound statement and of the break

while (name != "john") {l := (select Person.name = name); name :=

get name();}
no comments

do/while statement

Syntax: do statement while (cond expr)

where cond expr is a boolean expression, and statement any statement: an expression statement, an iteration statement,
a compound statement, a selection statement, a function definition statement, a jump statement or an empty statement.

Semantics: The statement is executed at least once. Then while the boolean expression cond expr is evaluated to
true, the statement is executed. Note that a do/while statement does not return any atom

62 CONTENTS

The following table presents several examples of do/while statements:

do/while Statement Examples

do a++; while (true);

a is increment definitively!

do a=+; while (n--);

an error is raised: boolean expected, got integer

do a++; while (n-- > 0);

this is better

do {if (!perform(a++)) break; check(a);} while (n++ <= 100 || stop);

note the usage of a compound statement and of the break

do {l := (select Person.name = name); name := get name();} while (name

!= "john");

no comments

C-for statement

Syntax: for ([expr1] ; [cond expr] ; [expr2]) statement
where cond expr is a boolean expression, expr1 and expr2 are any expressionss and statement any statement: an expres-
sion statement, an iteration statement, a compound statement, a selection statement, a function definition statement, a
jump statement or an empty statement.

Semantics: The expression expr1 is evaluated. While the boolean expression cond expr is evaluated to true, the
statement is executed and the expression expr2 is evaluated.
Note that a C-for statement does not return any atom

The following table presents several examples of C-for statements:

C-for Statement Examples

for (x := 0; x < 100; x++) a++;

increment a an hundred times

for (x := 0, y := 1; x < 100 && check(y); x++) {y := get(y); if (y ==

9999) break;}
a more complex example

for (x := 100; x; x--) perform(x);

raises an error: boolean expected, got integer

for (x := 0;;) doit();

note that there is neither a conditionnal expression, nor a second expression

for (;;) doit();

same as while(true)

collection-for statement

Syntax: for (var in expr) statement
where cond expr is a boolean expression, var denotes the name of a variable, expr is an expression of type collection and
statement any statement: an expression statement, an iteration statement, a compound statement, a selection statement,
a function definition statement, a jump statement or an empty statement.

Semantics: For each element in the collection denoted by expr, the variable var is assigned to this element and the
statement is executed. Note that a collection-for statement does not return any atom

The following table presents several examples of collection-for statements:

collection-for Statement Examples

5. LANGUAGE SYNTAX 63

for (x in list(1, 2, 3)) a += x;

increments a with 1, 2 and 3

for (x in (select Person)) names += x.name;

concatenates all the person names

for (x in (select Person.name = "john")) if (x.age < 10 || x.spouse.age

< 10) throw "cannot mary children!!";

a moralistic example

for (x in 1) doit();

raises an error: boolean expected, got integer

5.33 Jump Statements

There are two jump statements based on the keywords break and return.

break Statement

The syntax for break statement is:
break statement
where statement is an optional integer expression statement indicating the break level. If not specified, the break level is
1. The break statement may appear only within an iteration statement: while, do/while, for statements.

break Statement Examples

Statement Comments

break; raises an error : break operator

<<break; >> : level 1 is too deep.

break 3; raises an error : break operator

<<break; >> : level 3 is too deep.

for (x := 0; ; x++) if (x == 30)

break;

break the loop when x is equal to 30

while (true) {x++; if (!check(x))

break;}
break the loop when check(x) is not true

while (true) {x++; if (!check(x))

break 2;}
raises an error : break operator

<<break; >> : level 2 is too deep.

while (true) {x++; while (x < 100)

if (!check(&x)) break 2;}
break the two loop when check(&x) is not
true

return Statement

The syntax for return statement is: return [statement]
where statement is an optional expression statement indicating the atom to return. The atom to return may be of any
type. If not specified, no atom is returned. The return statement may appear only within a function definition statement.

return Statement Examples

Statement Comments

return; raises an error : return operator

<<return; >> : return must be

performed in a function

function fact(n) {return n *

fact(n-1);}
ok.

function f(x) {if (g(x)) return x+1;

return x+2;}
ok.

function f(b) {if (b) return list(1,

2, 3); return bag(1);}
ok.

function f(b) {if (b) return list(1,

2, 3); return bag(1);}
ok.

define as f(x) (if (x) return x) raises an error : syntax error

64 CONTENTS

5.34 Function Definition Statements

As introduced previously, OQL supports functions. There are two sorts of functions definition syntax: function definition
expression and function definition statements. The first ones, exposed in Section 5.26 can contain only one expressions.
That means that they cannot include neither selection, neither statements, neither jump statements. Furthermore, as
only one expression is allowed, functions that need several expressions, one must use the comma sequencing operaot to
seperate the expressions, thus making this code not always readable.
We introduce here the more general form of function definitions which overrides the limitations of the previous form. The
general form of function defintion statements is: function identifier ([arglist]) compound statement

1. identifier denotes any valid OQL identifier, except a keyword

2. arglist is an optional comma-separated list of identifiers optionally followed, for default arguments, by a “?” and an
expr, for instance:
(var1, var2, var3? expr, var4? expr)

3. compound statement is a optionnal semicolon-separated list of statements surrounded by braces.

For instance:

function f(x, y, z ? oql$maxint) {

if (x > y)

throw "error #1";

return x - y * 2 / z;

}

Argument Types/Return Type

Functions are not typed. That means that neither the return type nor the argument types may be given. It is why there
is no function overloading mechanisms. To take benefit of the overloading mechanisms, one must use methods.
Nevertheless, it is possible to add type checking by using library functions such as is int, is string... combined with the
assert or the assert msg library functions. For instance, to check that the first argument is an integer and the second
one a collection:

function doit(n, coll) {

assert_msg(is_int(n), "doit: argument #1: integer expected");

assert_msg(is_coll(coll), "doit: argument #2: collection expected");

// body of the function

}

The assert msg check that its first argument is equal to true, otherwiser an exception containing the second argument
string is thrown:

doit(1, list(1, 2, 3)); // ok

doit(1.2, list(1)); // raises the error:

// assertion failed: ’doit: argument #1: integer expected’

Arguments in, out and inout

Furthermore, one cannot specify that an argument is an input argument (in), an output argument (out) or an input/output
argument (inout). In a function call, expressions and variables are always passed by value not by reference, this means
that the call to “perform(x, y)” cannot modify neither x nor y. (In fact, yes it can! It is explained below. But forget it
for now).
So, to modify variable through a function call, one needs to give the reference (or address) of this variable, not its value.
In this case, the function must execute specific code dealing with address variables instead of their values.
The refof operator, introduced in a previous section, gives the reference of an identifier. Remember that the expression
refof x returns the identifier x. To make a function call using references one must do: swap(refof x, refof y) or the
equivalent more compact form swap(&x, &y).
Contrary to C++, reference manipulation is not transparent in OQL: to access the value of a reference, one must use the
valof operator (i.e. * operator). The swap function which swaps its two inout arguments has already been introduced:

function swap(rx, ry) {

v := *rx;

*rx := *ry;

*ry := v;

}

5. LANGUAGE SYNTAX 65

The arguments have been prefixed by r to indicate that they are references. So, the function call swap(&x, &y) will swap
properly the variables x and y.
One can add type checking in the swap function, as follows:

function swap(rx, ry) {

assert_msg(is_ident(rx), "swap: argument #1 identifier expected");

assert_msg(is_ident(ry), "swap: argument #2 identifier expected");

v := *rx;

*rx := *ry;

*ry := v;

}

Return Value

By default, a statement-oriented function returns no atom. To make a function returning an atom, one must use the
return statement previously introduced. As a function has no specified returned type, it may contained several return
statements returning atom of different types:

function perform(x) {

if (x == 1)

return "hello";

if (x == 2)

return list(1, 2, 3) + list(4, 20);

if (x == 3)

return 2;

if (x == 4)

return ’a’;

}

alpha := perform(1); // alpha is equal to "hello"

alpha := perform(3); // alpha is equal to 2

alpha := perform(8); // alpha is equal to nil

Default Arguments

OQL provides support for default arguments in a function definition statement. The syntax for a default argument is:
“var ? expr” or “var := expr”.
As in C and C++, the arguments with a default value must not followed by any argument with default values. For
instance, function f(x, y, z := "alpha") is valid while function f(x, y, z := "alpha", t) is not valid.

Unval Arguments

Sometimes, it is interesting to prevent the evaluation of some input arguments. For instance, let the function if then else

which takes three arguments:

1. cond: a boolean expression,

2. then expr: expression of any type; is evaluated and returned if and only if the condition is evaluated to true

3. else expr: expression of any type; is evaluated and returned if and only if the condition is evaluated to false

It is clear that the following function definition:

function if_then_else(cond, then_expr, else_expr) {

if (cond)

return then_expr;

return else_expr;

is not correct as, although it returns the correct expression, the then expr and the else expr will be evaluated. For
instance, if then else(x < 10, ::a := 2, ::b := 3) will return 2 if x is less than 10, otherwise it will return 3, but in
any case, a will be assigned to 2 and b will be assigned to 3.
So, one needs a way to tell the interpreter that we do not want to evaluate the second and the third argument. The special
character | before an argument means that this argument must not be evaluated. In this case, this argument is substitued
by the string representation of the expression. For instance, let the function if then else:

function if_then_else(cond, |then_expr, |else_expr) {

// ...

}

66 CONTENTS

when performing the call “if then else(x < 10, ::a := 2, ::b := 3)”:

1. the value of cond in the body of the function will be true or false,

2. the value of then expr in the body of the function will be "::a:=2"

3. the value of else expr in the body of the function will be "::b:=3"

The correct implementation of this function is as follows:

function if_then_else(cond, |then_expr, |else_expr) {

if (cond)

return eval then_expr;

return eval else_expr;

}

Scope of Variables

In the body of a function defintion, every variable on the left side of an assignment has a local scope except if this variable
is prefixed by the global scope operator ::. That means, that after the following statement sequence:

a := 2;

function doit() {

a := 1;

}

the variable a is still equal to 2. While after:

Recursivity

a := 2;

function doit() {

::a := 1;

}

the variable a is equal to 1.

Particularity

One can define a statement-oriented function inside the body of a statement-oriented function, for instance:

function compute(amount_in_euro, usdollar_per_euro) {

function euro2usdollar(euro, usd ? usdollar_per_euro) {

return euro * usd;

}

x := euro2usdollar(euro * 1.24);

x += euro2usdollar(1000);

return x * .120;

}

Note that the function defined in the body of the function compute has a global scope, that means that after one
execution of compute the function is available at the global level of the OQL session. It is possible, that in a future
version, the functions defined in the body of a function definition will have a local scope.

The oql$functions Variable

The oql$functions value is a list whose elements are the name of all the OQL functions defined in the current OQL
session. Each you add a user function, this variable is updated. At the beginning of a session, the value of
textttoql$functions is:

5. LANGUAGE SYNTAX 67

list(is_int, is_char, is_double, is_string, is_oid, is_num, is_bool, is_bag,

is_set, is_array, is_list, is_coll, is_struct, is_empty, void, assert,

assert_msg, min, max, first, last, cdr, count, interval, sum, avg, is_in,

distinct, flatten, flatten1, tolower, toupper, tocap, toset, tolist,

tobag, toarray, listtoset, bagtoset, arraytoset, listtobag, settobag,

arraytobag, bagtolist, settolist, arraytolist, bagtoarray, settoarray,

listtoarray, strlen, substring, forone, forall, delete_from, get_from,

ifempty, null_ifempty, getone)

For instance, to put the complete definition of all these functions into the variable functionString:

functionString := "";

for (x in oql$functions)

functionString += "FUNCTION " x + ": " + bodyof x + "\n";

The next section provides a few statement-oriented and expression-oriented function definitions.

68 CONTENTS

6 Quick Reference Manual

This OQL quick reference manual presents consise information about the builtin and library functions and methods, the
special variables, and the eyedboql tool. The standard library source code is presented and it provides a quick reference
card containing all the language constructs.

6.1 Builtin and Library Functions and Methods

OQL provides a few builtin and library functions. The builtin functions are written in C++ and cannot be overriden
while the library functions are written in OQL and may be redefined by the user. The code for the library functions can
be found in the section The Standard Library Package. The EyeDB system classes object, database, connection and
EyeDB contains builtin class and instance methods that can be accessed from OQL. Some of these methods are briefly
introduced in this section.

Type Predicat Functions

is int(x) : returns true if x is an int

is double(x) : returns true if x is a double; otherwise, returns false

is string(x) : returns true if x is a string; otherwise, returns false

is oid(x) : returns true if x is an oid; otherwise, returns false

is num(x) : returns true if x is an number (int, float or char); otherwise, returns false

is bool(x) : returns true if x is a bool; otherwise, returns false

is bag(x) : returns true if x is a bag; otherwise, returns false

is set(x) : returns true if x is a set; otherwise, returns false

is array(x) : returns true if x is a array; otherwise, returns false

is list(x) : returns true if x is a list; otherwise, returns false

is coll(x) : returns true if x is a collection; otherwise, returns false

is struct(x) : returns true if x is a struct; otherwise, returns false

is empty(x) : returns true if x is nil; otherwise, returns false

Collection Conversion Functions

The collection conversion functions take one collection argument and convert this collection to another collection type and
returns the converted collection.

toset(coll) : converts coll to a set

tolist(coll) : converts coll to a list

tobag(coll) : converts coll to a bag

toarray(coll) : converts coll to a array

listtoset(coll) : checks that coll is a list then converts coll to a set

bagtoset(coll) : checks that coll is a bag then converts coll to a set

arraytoset(coll) : checks that coll is a array then converts coll to a set

listtobag(coll) : checks that coll is a list then converts coll to a bag

settobag(coll) : checks that coll is a set then converts coll to a bag

arraytobag(coll) : checks that coll is a array then converts coll to a bag

bagtolist(coll) : checks that coll is a bag then converts coll to a list

settolist(coll) : checks that coll is a set then converts coll to a list

arraytolist(coll) : checks that coll is a array then converts coll to a list

bagtoarray(coll) : checks that coll is a bag then converts coll to a array

settoarray(coll) : checks that coll is a set then converts coll to a array

listtoarray(coll) : checks that coll is a set then converts coll to a array

Sort Functions

These functions are used to sort collection of sortable atom of homogeneous types: int, char, float or string.

sort(coll) : coll must a be a collection of homogeneous sortable atoms;
sorts and returns this collection

rsort(coll) : coll must a be a collection of homogeneous sortable atoms;
reverse sorts and returns this collection

isort(coll, idx) : coll must a be a collection of list or array

of homogeneous sortable atoms;
idx must be of int type;

6. QUICK REFERENCE MANUAL 69

sorts the collection of collections according to the
#idx element of the inner collection

risort(coll, idx) : same as previous function, but perform a reverse sort

Collection Miscelleanous Functions

first(coll) : returns the first element of coll
car(coll) : returns the first element of coll
last(coll) : returns the last element of coll
cdr(coll) : returns all elements of coll but the first
getn(coll, n) : returns at most n elements of coll
count(coll) : returns the count of elements of coll

identical to coll[!], but less efficient
sum(coll) : returns the sum of the numbers of coll
avg(coll) : returns the float average of the numbers coll

distinct(coll) : eliminates duplicates of coll
flatten(coll) : recursive flattening of coll
flatten1(coll) : one level flattening of coll
min(coll) : returns the minimal number of coll
max(coll) : returns the maximal number of coll
forone(coll, f, data) : if f(e, data) for one element e

of coll, returns true;
otherwise returns false;

forall(coll, f, data) : if f(e, data) for all element e

of coll, returns true;
otherwiser returns false;

String Function Functions

tolower(str) : converts (and returns) string str into lowercase
toupper(str) : converts (and returns) string str into uppercase
tocap(str) : converts the first character and each character following

a of str into an uppercase
strlen(str) : returns the length of str;

same as str[!], but less efficient
substring(str, from, len) : returns the sub-string of str

from the #from to the
from+len characters;
same as str[from:from+len] but less efficient

Query Functions

delete from(class) : deletes all the instances of a given class
get from(class) : gets all the instances of a given class

Useful Functions

assert(cond) : throws an exception is cond is not true

assert msg(cond, msg) : throws the exception message msg if cond is not true

interval(from, to) : returns a list composed of the number from from to to

Native Methods of the Class object

The native methods of the class object allows us to perform a few action such as getting the oid of an instance getOid(),
getting the database of an instance getDatabase() or converts the instance to its string representation toString(). For
instance, to apply this last method to the first Person instance: first(select Person).toString().

All the native methods of the class object are instance methods.

oid getOid() : returns the oid of the object
string toString() : returns the string representation of the object
database *getDatabase() : returns the database instance of the object
void setDatabase(in database *) : changes the database of the object

70 CONTENTS

void store() : stores the object in the database
object *clone() : clones the object; returns the clone
int getCTime() : returns the creation time of the object (seconds from 1/1/1970)
int getMTime() : returns the last modification time of the object
string getStringCTime() : returns the string representation of the creation time of the object
string getStringMTime() : returns the string representation of the creation time of the object
bool isRemoved() : returns true if the object is removed; false otherwise
bool isModify() : returns true if the object is modified; false otherwise

Native Methods of the Class connection

All the native methods of the class connection are instance methods. an object obtained using the new operator, They
can be applied on a database object that can be either the current connection oql$db->getConnection() either an object
obtained using the new operator, for instance: new <> connection().

void open() : opens a new connection with default host and port
void open(in string host, in string port): opens a new connection using host and port

void close() : closes the connection

Native Methods of the Class database

The following methods are the instance methods of the class database: They can be applied on a database object that
can be either oql$db either an object obtained using the new operator, for instance: new <> database(name : "foo").

void open(in connection *conn,

in int mode) : opens a new database using the connection
conn and the open flag mode mode

void open(in connection *conn,

in int mode,

in string userauth,

in string passwdauth) : opens a new database using the connection conn,
the open flag mode mode and the authentication
userauth/passwdauth

void close() : closes the database
connection *getConnection() : returns the connection tied to the database
int getOpenMode() : returns the open flag mode of the database
int getVersionNumber() : returns the version number of the database
string getVersion() : returns the string version of the database

void removeObject(in oid) : removes the object whose oid is given

void transactionBegin() : begins a new transaction
void transactionBegin(in string mode) : begins a new transaction in mode mode

void transactionCommit() : commits the current transaction
void transactionAbort() : abort the current transaction

bool isInTransaction() : returns true if a transaction is in progress;
false otherwiser

Native Methods of the Class EyeDB

All the native methods of the class EyeDB are class methods.

string getConfigValue(in string s) : returns the string value of the configuration variable s

int getVersionNumber() : returns the EyeDB current version number
string getVersion() : returns the EyeDB current stringversion
string getArchitecture() : returns the architecture of the current server
string getDefaultCompiler() : returns the C++ compiler used to compile the current server

6. QUICK REFERENCE MANUAL 71

6.2 Special Variables

The following variables are predefined or have a special meaning:

oql$variables : list containing the name of all variables
oql$functions : list containing the name of all functions
oql$result : the result atom of the last statement
oql$db : object atom instance of the class database denoting the current database
oql$minint : the minimal integer 0x8000000000000000

oql$maxint : the maximal integer 0x7FFFFFFFFFFFFFFF

oql$minfloat : the minimal float 4.94065645841246544e-324

oql$maxfloat : the maximal float 1.79769313486231570e+308

6.3 The eyedboql Tool

eyedboql is a tool that allows you to execute interactively OQL statements. This tool is similar to the Oracle sqlplus

and Sybase isql well known tools.

Running eyedboql

The simplest way to run eyedboql is to type eyedboql as follows (assuming that $ is your shell prompt):

$ eyedboql

Welcome to eyedboql.

Type ‘\help’ to display the command list.

Type ‘\copyright’ to display the copyright.

?

The string “? “ is the default prompt for eyedboql.

In an eyedboql session, anything you type is interpreted as an OQL construct (or a part of an OQL construct),
Nevertheless, if the first word of an input line begins with the escape character “
”, this word is interpreted as an eyedboql internal command. There are about 30 internal commands, but you need to
know only of few of them to use eyedboql.

The purpose of the main internal commands is:
- to create or delete databases,
- to open a database,
- to begin, commit or abort a transaction,
- to set the current user and password,
- to execute the contents of a file,
- to display the string representation of an object,
- to display the HTML representation of an object in a WEB browser,
- to change the prompts and the escape character.

Executing Statements

eyedboql allows us to execute OQL statements in an interactive way. For instance, to perform the addition 1+3:

$ eyedboql

Welcome to eyedboql.

Type ‘\help’ to display the command list.

Type ‘\copyright’ to display the copyright.

? 1+3;

= 4

?

The string “= ” preceedes the result atom (if any) of your statement; in the current example, the result atom is the
evaluation of the expression statement 1+3;.

Execution Process

Each complete statement typed is sent to the OQL interpreter, A complete statement has a special meaning: it is any
sequence of characters:
a. that end with a semi-colon and

72 CONTENTS

b. which parenthesis are balanced and
c. which brakets are balanced and
d. which braces are balanced.

While the statement is not complete, eyedboql prompts the “second prompt” (“>> ” by default) after each newline.
Once the statement is complete, it is sent to the OQL interpreter, then the atom result is display (if any) after the string
“= ” and the main prompt “? ” is displayed again.

For instance, the input sequence of characters “1+newline3newline;” gives:

? 1+

>> 3

>> ;

= 4

while the input sequence “{ a := 1+3;newlinec := 2+94;newlined := a+c}” gives:

? { a := 1+3;

>> c := 2+94;

>> d := a+c}

?

Note that no “= result atom” is echoed because a compound statement does not return any atom.

This last example:

? while (true) {

>> a++;

>> b++;

>> }

>>

>> ;

?

shows the necessity of typing a semicolon after the while statement although a while statement does not need to end by
a semi-colom in the OQL specifications.

Getting Started

By default in an eyedboql session, the database EYEDBDBM is opened in read-only mode. To use another database, one
must use either the command line option -db either the
open internal command.

To start to play with eyedboql one needs to know the following five internal commands:

1.
open database [rw|ro] local trsless: opens the database in read-write (rw) or read-only (ro or no option) mode. If
local is there, database is opened in a local mode. If trsless is there database is opened in transaction-less mode.
For instance “
open foo rw” opens the database foo is read-write mode.

2.
print [sequence of oids] other options: if a sequence of oids is given: loads the object corresponding to each oid

and displays its string representation,
if no sequence of oids is given: loads the object corresponding to each oid returned by the last statement and
displays its string representation.
For instance, “select Person;” will return a bag containing the oid of each Person instance.
The internal command “
print” typed after that will loads and displays of the corresponding Person instances.
The other options are one or more space-separated of the followings:

full : loads and displays object using the full recursive mode
ctime : displays the creation time of the object
mtime : displays the last modification time of the object
contents : displays the contents of collections
native : displays the native attributes
all : means “ctime mtime contents native”

6. QUICK REFERENCE MANUAL 73

For instance “
print full contents” will load and display the objects and their collection contents in a full recursive mode.

3.
commit: commits the current transaction

4.
abort: aborts the current transaction

5.
quit or ˆD : quits the current eyedboql session

Note that a transaction is started automatically before the first complete statement of the sesssion of before the complete
statement immediately following
commit or
abort internal command.

Here is a commented example showing the use of these internal commands:

run eyedboql:

$ eyedboql

Welcome to eyedboql.

Type ‘\help’ to display the command list.

Type ‘\copyright’ to display the copyright.

open the database person in read-write mode:

? \open person rw

get the first person whose name is ”john” and display it :

? john := first(select Person.name = "john");

= 66373.12.4008447:oid

? \print

66373.12.4008447:oid Person = {

name = "john";

age = 32;

addr Address = {

street = "clichy";

town = "Paris";

country = NULL;

};

cstate = Sir;

*spouse 66891.12.2738687:oid;

cars set<Car*> = set {

name = "";

count = 4;

dimension = 1;

reference = true;

magorder = 4;

};

children array<Person*> = array {

name = "";

count = 0;

range = [0,0[;

dimension = 1;

reference = true;

magorder = 4;

};

x = NULL;

};

change the name of john to ”JOHNNY”:

? john.name := "JOHNNY";

= "JOHNNY"

74 CONTENTS

retrieve the person whose name is ”JOHNNY” and compares it to john using assert : all is fine, no error is raised!

? assert(john = first(select Person.name = "JOHNNY"));

abort the transaction and look for the person whose name is ”JOHNNY”: no person is returned! this is ok as the transaction
was aborted :

? \abort

? select Person.name = "JOHNNY";

= list()

change the name of john to ”JOHNNY” again and commit the transaction:

? john.name := "JOHNNY";

= "JOHNNY"

? \commit

then retrieve again the person whose name is ”JOHNNY” and compare it to john using assert: all is fine, no error is
raised!

? assert(john = first(select Person.name = "JOHNNY"));

quit eyedboql session

? \quit

$

We are going to conclude this section by this important note:
as introduced previously, the current transaction will be committed (resp. aborted) by a
commit (resp.
abort) command.
If you quit eyedboql before committing (resp. aborting) the transaction, it will be automatically aborted, so all your
changes will be lost.
This is the default behaviour. This behaviour can be changed by using the
commitonclose internal command.

Command Line Options

The eyedboql command line options are as follows:

Program Options:
-d <name>, –database=<name¿ Database name
-r, –read Open database in read mode
-w, –read-write Open database in read/write mode
-s, –strict-read Open database in strict read mode
-l, –local Open database in local mode
-c <command>, –command=<command> OQL command to execute
-p, –print Display all the objects loaded
–full Full recursive mode is used to display objects
–commit Commits the current transaction on close
-i, –interact Enter interpreter after executing file or commands
-e, –echo Echo each command
–admin Open database in admin mode
-h, –help Display this message
<file¿ File(s) to execute

Common Options:
-U <user>|@, –user=<user>|@ User name
-P [<passwd>], –passwd[=<passwd>] Password
–host=<host> eyedbd host
–port=<port> eyedbd port
–inet Use the tcp port variable if port is not set
–dbm=<dbmfile> EYEDBDBM database file
–conf=<conffile> Configuration file
–logdev=<logfile> Output log file
–logmask=<mask> Output log mask
–logdate=on|off Control date display in output log

6. QUICK REFERENCE MANUAL 75

–logtimer=on|off Control timer display in output log
–logpid=on|off Control pid display in output log
–logprog=on|off Control progname display in output log
–error-policy=<value> Control error policy: status|exception|abort|stop|echo
–trans-def-mag=<magorder> Default transaction magnitude order
–arch Display the client architecture
-v, –version Display the version
–help-eyedb-options Display this message

For instance, to execute the statement “delete from(Person)” on the database person:

$ eyedboql -d person -w -c "delete_from(Person)"

$

To execute the command “persons := (select Person)” and then enter the interactive mode of eyedboql:

$ eyedboql -d person -w -c "persons := (select Person)" -i

Welcome to eyedboql.

Type ‘\help’ to display the command list.

Type ‘\copyright’ to display the copyright.

?

To execute the file mylib.oql:

$ eyedboql -d person -w mylib.oql

6.4 The Standard Library Package

The stdlib.oql file contains a few basic library functions. It can be found in the directory libdir/eyedb/oql. It is
automatically imported when opening an OQL session. The following code, extracted from this file, provides an interesting
way to understand OQL.

//

// minimal and maximal integer values

//

oql$maxint := 0x7FFFFFFFFFFFFFFF;

oql$minint := 0x8000000000000000;

nulloid := 0:0:0:oid;

NULLOID := 0:0:0:oid;

//

// type predicat functions

//

define is_int(x) as (typeof x == "integer");

define is_char(x) as (typeof x == "char");

define is_float(x) as (typeof x == "float");

define is_string(x) as (typeof x == "string");

define is_oid(x) as (typeof x == "oid");

define is_object(x) as (typeof x == "object");

define is_num(x) as (is_int(x) || is_float(x) || is_char(x));

define is_bool(x) as (typeof x == "bool");

define is_bag(x) as (typeof x == "bag");

define is_set(x) as (typeof x == "set");

define is_array(x) as (typeof x == "array");

define is_list(x) as (typeof x == "list");

define is_coll(x) as (is_list(x) || is_array(x) || is_set(x) || is_bag(x));

define is_struct(x) as (typeof x == "struct");

define is_empty(x) as (typeof x == "nil");

//

// void(x): evaluates argument and returns nil

//

76 CONTENTS

define void(x) as (x, nil);

function assert(|cond) {

r := eval cond;

if (!r)

throw "assertion failed: ’" + cond + "’";

}

function assert_msg(|cond, msg) {

r := eval cond;

if (!r)

throw "assertion failed: ’" + msg + "’";

}

//

// min(l): returns the minimal integer in a collection

//

function min(l) {

msg := "function min(" + (string l) + "): ";

if (!is_coll(l))

throw msg + "collection expected";

m := oql$maxint;

for (x in l) {

if (x != null) {

if (!is_num(x))

throw (msg + "numeric expected");

if (x < m)

m := x;

}

}

return m;

}

//

// max(l): returns the maximal integer in a collection

//

function max(l) {

msg := "function max(" + (string l) + "): ";

if (!is_coll(l))

throw msg + "collection expected";

m := oql$minint;

for (x in l) {

if (x != null) {

if (!is_num(x))

throw (msg + "numeric expected");

if (x > m)

m := x;

}

}

return m;

}

//

// first(l): returns the first element in a list or array

//

function first(l) {

6. QUICK REFERENCE MANUAL 77

if (!is_coll(l)) // if (!is_list(l) && !is_array(l))

throw "function first: collection expected";

start := 0;

f := nil;

for (x in l)

if (start == 0) {

start := 1;

f := x;

break;

}

return f;

}

car := &first;

//

// last(l): returns the last element in a list or array

//

function last(l) {

if (!is_coll(l)) // if (!is_list(l) && !is_array(l))

throw "function last: list or array expected";

f := nil;

for (x in l)

f := x;

return f;

}

//

// cdr(l): returns all elements in a collection except the first one

//

function cdr(l) {

if (!is_coll(l)) // if (!is_list(l) && !is_array(l))

throw "function cdr: list or array expected";

r := list();

n := 0;

for (x in l) {

if (n != 0)

r += x;

n++;

}

return r;

}

//

// getn(l, n): returns all elements in a collection

//

function getn(l, n) {

rl := list();

cnt := 0;

for (x in l) {

if (cnt++ >= n)

break;

rl += x;

}

return rl;

78 CONTENTS

}

//

// getrange(l, f, nb): returns all elements in a collection from element from

//

// identical to l[f:f+nb]

//

function getrange(l, f, nb) {

if (!is_list(l) && !is_array(l))

throw "function getrange: list or array expected";

rl := list();

cnt := 0;

max := f + nb;

for (x in l) {

if (cnt >= max)

break;

if (cnt >= f)

rl += x;

cnt++;

}

return rl;

}

//

// count(l): returns element count of a collection

//

function count(l) {

if (typeof l == "nil")

return 0;

if (!is_coll(l))

throw "function count: collection expected, got " + typeof(l);

return l[!];

}

//

// interval(x, y): constructs an integer list bounded by ’x’ and ’y’

//

function interval(x, y) {

n := x-1;

l := list();

while (n++ < y)

l += n;

return l;

}

//

// sum(l): returns the sum of collection elements

//

function sum(l) {

if (!is_coll(l))

throw "function sum: collection expected";

n := 0;

for (x in l)

6. QUICK REFERENCE MANUAL 79

n += x;

return n;

}

//

// avg(l): returns the average of collection elements

//

function avg(l) {

if (!is_coll(l))

throw "function avg: collection expected";

return float(sum(l))/count(l);

}

//

// is_in(l, z): returns true in element ’z’ is in collection ’l’

//

function is_in(l, z) {

for (x in l)

if (x == z)

return true;

return false;

}

//

// distinct(l): returns distinct elements in a collection

//

function distinct(l) {

if (is_list(l)) ll := list();

else if (is_bag(l)) ll := bag();

else if (is_array(l)) ll := array();

else if (is_set(l)) ll := set();

else throw "function distinct: collection expected";

for (x in l)

if (!is_in(ll, x))

ll += x;

return ll;

}

//

// flatten(l): full recursive flatten function

//

function flatten(l) {

if (!is_coll(l))

return l;

ll := list();

for (x in l)

if (is_coll(x))

ll += flatten(x);

else

ll += x;

return ll;

}

//

// flatten1(l): 1-level recursive flatten function

80 CONTENTS

//

function flatten1(l) {

if (!is_coll(l))

return l;

ll := list();

for (x in l)

ll += x;

return ll;

}

//

// tolower(s): returns lower case string

//

function tolower(s) {

n := 0;

x := "";

delta := ’a’ - ’A’;

while (s[n] != ’\000’) {

if (s[n] >= ’A’ && s[n] <= ’Z’)

x += string(char(s[n] + delta));

else

x += string(s[n]);

n++;

}

return x;

}

//

// toupper(s): returns upper cased string

//

function toupper(s) {

n := 0;

x := "";

delta := ’A’ - ’a’;

while (s[n] != ’\000’) {

if (s[n] >= ’a’ && s[n] <= ’z’)

x += string(char(s[n] + delta));

else x += string(s[n]);

n++;

}

return x;

}

//

// tocap(s): returns capitalized word string

//

function tocap(s) {

n := 1;

x := "";

delta := ’A’ - ’a’;

6. QUICK REFERENCE MANUAL 81

s := tolower(s);

if (s[0] >= ’a’ && s[0] <= ’z’)

x += string(char(s[0] + delta));

while (s[n] != ’\000’) {

if (s[n] == ’_’)

x += string(char(s[++n] + delta));

else

x += string(s[n]);

n++;

}

return x;

}

//

// Collection Conversion Functions

//

//

// General Conversion Functions

//

function toset(l) {

if (!is_coll(l))

throw ("function toset: collection expected, got " + typeof(l));

if (!is_set(l)) {

s := set();

for (x in l)

s += x;

return s;

}

return l;

}

function tolist(l) {

if (!is_coll(l))

throw ("function tolist: collection expected, got " + typeof(l));

if (!is_list(l)) {

s := list();

for (x in l)

s += x;

return s;

}

return l;

}

function tobag(l) {

if (!is_coll(l))

throw ("function tobag: collection expected, got " + typeof(l));

if (!is_bag(l)) {

s := bag();

for (x in l)

s += x;

return s;

}

82 CONTENTS

return l;

}

function toarray(l) {

if (!is_coll(l))

throw ("function toarray: collection expected, got " + typeof(l));

if (!is_array(l)) {

s := array();

for (x in l)

s += x;

return s;

}

return l;

}

//

// toset family Conversion Functions

//

function listtoset(l) {

if (!is_list(l))

throw ("function listtoset: list expected, got " + typeof(l));

return toset(l);

}

function bagtoset(l) {

if (!is_bag(l))

throw ("function bagtoset: bag expected, got " + typeof(l));

return toset(l);

}

function arraytoset(l) {

if (!is_array(l))

throw ("function arraytoset: array expected, got " + typeof(l));

return toset(l);

}

//

// tobag family Conversion Functions

//

function listtobag(l) {

if (!is_list(l))

throw ("function listtobag: list expected, got " + typeof(l));

return tobag(l);

}

function settobag(l) {

if (!is_set(l))

throw ("function settobag: set expected, got " + typeof(l));

return tobag(l);

}

function arraytobag(l) {

if (!is_array(l))

throw ("function arraytobag: array expected, got " + typeof(l));

return tobag(l);

}

//

6. QUICK REFERENCE MANUAL 83

// tolist family Conversion Functions

//

function bagtolist(l) {

if (!is_bag(l))

throw ("function bagtolist: bag expected, got " + typeof(l));

return tolist(l);

}

function settolist(l) {

if (!is_set(l))

throw ("function settolist: set expected, got " + typeof(l));

return tolist(l);

}

function arraytolist(l) {

if (!is_array(l))

throw ("function arraytolist: array expected, got " + typeof(l));

return tolist(l);

}

//

// toarray family Conversion Functions

//

function bagtoarray(l) {

if (!is_bag(l))

throw ("function bagtoarray: bag expected, got " + typeof(l));

return toarray(l);

}

function settoarray(l) {

if (!is_set(l))

throw ("function settoarray: set expected, got " + typeof(l));

return toarray(l);

}

function listtoarray(l) {

if (!is_list(l))

throw ("function listtoarray: list expected, got " + typeof(l));

return toarray(l);

}

//

// strlen(s): same as s[!]

//

function strlen(s) {

len := 0;

while (s[len] != ’\000’)

len++;

return len;

}

//

// substring(str, f, len)

//

function substring(str, f, len) {

s := "";

n := 0;

max := str[!] - f;

while (n < len && n < max) {

84 CONTENTS

s += string(str[n+f]);

n++;

}

return s;

}

//

// forone(l, fpred, data): returns true if and only if the function ’fpred’

// returns true for at least one element ’x’ in list ’l’

//

function forone(l, fpred, data) {

for (x in l)

if (fpred(x, data)) return true;

return false;

}

//

// forone(l, fpred, data): returns true if and only if the function ’fpred’

// returns true for all elements ’x’ in list ’l’

//

function forall(l, fpred, data) {

for (x in l)

if (!fpred(x, data)) return false;

return true;

}

//

// delete_from(cls): delete all instances of class ’cls’

//

function delete_from(|cls) {

for (x in (eval "select " + cls))

delete x;

}

//

// delete_(coll): delete contents of collection coll

//

function delete_(coll) {

for (x in coll)

delete x;

}

//

// get_from(cls): returns all instances of class ’cls’

//

function get_from(|cls) {

eval "select " + cls;

}

//

// generates an unused global symbol

//

function gensym() {

prefix := "::oql#_#_#";

for (i := 0; ; i++) {

varname := prefix + string(i);

6. QUICK REFERENCE MANUAL 85

if (!(eval "isset " + varname)) {

eval varname + " := 0";

return ident(varname);

}

}

}

//

// expression-like for-each function

//

function foreach_expr(|x, |coll, |expr, colltyp ? "list") {

varname := "_#_#_R_#_#_";

statement := "push " + varname + " := " + colltyp + "(); " +

"for (" + x + " in " + coll + ") " +

"{" + varname + " += " + expr + ";}" +

"pop " + varname;

return eval statement;

}

//

// expression-like for-C function

//

function for_expr(|start, |cond, |end, |expr, colltyp ? "list") {

varname := "_#_#_R_#_#_";

statement := "push " + varname + " := " + colltyp + "(); " +

"for (" + start + "; " + cond + "; " + end + ")" +

"{" + varname + " += " + expr + ";}" +

"pop " + varname;

return eval statement;

}

//

// expression-like while-C function

//

function while_expr(|cond, |expr, colltyp ? "list") {

varname := "_#_#_R_#_#_";

statement := "push " + varname + " := " + colltyp + "(); " +

"while (" + cond + ")" +

"{" + varname + " += " + expr + ";}" +

"pop " + varname;

return eval statement;

}

//

// expression-like do/while-C function

//

function do_while_expr(|expr, |cond, colltyp ? "list") {

varname := "_#_#_R_#_#_";

statement := "push " + varname + " := " + colltyp + "(); " +

"do {" + varname + " += " + expr + ";}" +

"while (" + cond + ");" +

"pop " + varname;

86 CONTENTS

return eval statement;

}

function extentof(|classname) {

return (select one class.name = classname).extent;

}

function countof(|classname) {

return (select one class.name = classname).extent.count;

}

function objectcount(db := oql$db) {

objcnt := 0;

db->transactionBegin();

for (cl in (select <db> x from class x where

x.type != "system" and x.name !~ "<"))

objcnt += cl.extent.count;

db->transactionCommit();

return objcnt;

}

function ifempty(x, y) {

if (is_empty(x))

return y;

return x;

}

function null_ifempty(x) {

return ifempty(x, null);

}

function getone(x) {

if (is_empty(x))

return null;

return first(flatten(x));

}

//

// database and transaction management

//

function open_db(db_name_or_id, strmode, user := null, passwd := null) {

if (strmode == "r")

mode := DBREAD;

else if (strmode == "rw")

mode := DBRW;

else if (strmode == "rlocal")

mode := DBREAD|DBOPENLOCAL;

else if (strmode == "rwlocal")

mode := DBRW|DBOPENLOCAL;

else

throw "invalid open mode: r, rw, rlocal or rwlocal expected, got " +

strmode;

if (is_int(db_name_or_id))

db := new<> database(dbid : db_name_or_id);

else

db := new<> database(dbname : db_name_or_id);

if (user == null)

db.open(oql$db.getConnection(), mode);

6. QUICK REFERENCE MANUAL 87

else

db.open(oql$db.getConnection(), mode, user, passwd);

return db;

}

function set_default(db) {

db->setDefaultDatabase();

}

function begin(db := oql$db) {

db->transactionBegin();

}

function begin_params(trsmode, lockmode, recovmode, magorder, ratioalrt, wait_timeout, db := oql$db) {

db->transactionBegin(trsmode, lockmode, recovmode, magorder, ratioalrt, wait_timeout);

}

function commit(db := oql$db) {

db->transactionCommit();

}

function abort(db := oql$db) {

db->transactionAbort();

}

//

// miscellaneous

//

function print_function(f) {

print "function " + (bodyof f) + "\n";

}

function print_functions() {

cnt := 0;

for (f in oql$functions) {

if (cnt > 0) print "\n";

print_function(f);

cnt++;

}

}

function print_variable(v) {

print string(v) + " = " + string(eval string(v)) + ";\n";

}

function print_variables() {

for (v in oql$variables) {

print_variable(v);

cnt++;

}

}

function print_classes(system := false) {

if (system)

l := (select list(x, x.name) from class x order by x.name);

else

l := (select list(x, x.name) from class x where x.type = "user" and x.name !~ "<" order by x.name);

for (c in l) {

cls := c[0];

clsname := c[1];

88 CONTENTS

print "class " + clsname;

if (cls.parent != NULL && (system || cls.parent.type != "system"))

print " extends " + cls.parent.name;

print "\n";

}

}

function print_obj(o, flags := 0) {

print o->toString(flags);

}

function print_objs(l, flags := 0) {

for (o in l)

print_obj(o, flags);

}

//

// contents_ expression

//

function contents_(coll) {

r := list();

for (x in coll) {

for (s in contents(x))

r += s;

}

return r;

};

function println(s) {

print(s+"\n");

}

function bench(|cmd) {

t0 := time_stamp::local_time_stamp();

r := eval cmd;

t1 := time_stamp::local_time_stamp();

us := t1->substract(t0).usecs;

println("Elapsed time: " + string(us/1000.) + " ms");

return r;

}

;

6. QUICK REFERENCE MANUAL 89

6.5 OQL Quick Reference Card

The following table presents all the OQL statements, expression types and the operators. For the operators common to
C++ and OQL, the precedence and associativity is the same.

Quick Reference Card

Statements

expression statement expr ;

selection statement if (cond expr) statement [else statement]

jump statements break [expr] ;
return [expr] ;

iteration statements while (cond expr) statement
do statement while (cond expr)

for ([expr] ; [cond expr] ; [expr]) statement
for (var in expr) statement

compound statement { statement }

function definition statement function identifier ([arglist]) compound statement

empty statement ;

Arithmetic Expressions

add + expr + expr
substract - expr - expr
multiply * expr * expr
divide / expr / expr
shift left << expr << expr
shift right >> expr >> expr
modular % expr % expr
bitwise and & expr & expr
bitwise inclusive or | expr | expr
bitwise xor ^ expr ^ expr
complement ~ ~ expr

Assignment Expressions

simple assignment := lvalue := expr
add and assign += lvalue += expr
substract and assign -= lvalue -= expr
multiply and assign *= lvalue *= expr
divide and assign /= lvalue /= expr
shift left and assign << lvalue <<= expr
shift right and assign >> lvalue >>= expr
inclusive OR and assign |= lvalue |= expr
exclusive OR and assign & lvalue &= expr
modulo and assign % lvalue %= expr
exclusive OR and assign ^ lvalue ^= expr

Auto Increment & Decrement Expressions

post increment ++ lvalue++
post decrement -- lvalue--
pre increment ++ ++lvalue
pre increment -- --lvalue

Logical Expressions

logical and && expr && expr
logical and and expr and expr
logical or || expr || expr
logical or or expr or expr

Comparison Expressions

not ! ! expr
not not not expr
equal = expr = expr
equal == expr == expr
not equal != expr != expr
less than < expr < expr
less <= expr <= expr
greater > expr > expr

90 CONTENTS

greater than >= expr >= expr
match regular expression ~ expr ~ expr
match regular expression case
insensitive

~~ expr ~~ expr

not match regular expression !~ expr !~ expr
not match regular expression
case insensitive

!~~ expr !~~ expr

match regular expression like expr like expr

Conditionnal Expressions

conditionnal expression ? : expr ? expr : expr

Expression Lists

comma sequencing , expr , expr

Array Expressions

subscripting [] expr [expr]

interval subscriptiong [:] expr [expr :expr]

Path Expressions

member selection . expr . expr
member selection -> expr -> expr

Function Call

function call () expr (expr list)

Method Invocation
member selection () expr ->expr (arglist)

Eval/Unval Operators

eval eval eval expr
no eval unval unval expr

Identifier Expressions

scope :: :: identifier
is set isset isset identifier
unset unset unset identifier
reference of & & identifier

refof refof identifier
value of * * identifier
value of valof valof identifier
scope of scopeof scopeof identifier
push onto symbol table push push identifier
push onto symbol table and as-
sign

push push expr

pop from symbol table pop pop identifier

Set Expressions

union union expr union expr
intersection intersect expr intersect expr
except except expr except expr
include < expr < expr
include or equal <= expr <= expr
contain > expr > expr
contain or equal >= expr >= expr

Object Creation

new new [new] new construct
new new new< opt expr > new construct

Object Deletion

delete delete delete expr

Collection Expressions

contents contents contents expr
is in in expr in expr
add to collection add to add expr to expr
suppress from collection suppress from suppress expr from expr
set element in or get element
from an indexed collection

[] expr [expr]

append to an indexed collection append/to append expr to expr
empty collection empty empty expr
exists in collection in exists identifier in expr : expr
for all in collection for all for all identifier in expr : expr

6. QUICK REFERENCE MANUAL 91

for some in collection for for < expr , expr > in expr : expr

Exception Expressions

throw exception throw throw expr

Function Definition

define function define as define identifier [arglist as expr

Conversion

string conversion string string(expr)

integer conversion int int(expr)

character conversion char char(expr)

float conversion float float(expr)

identifier conversion ident ident(expr)

oid conversion oid oid(expr)

Query Expressions

database query select select expr [from {expr [as] identifier}
[where expr]] [order by {expr}]
select expr [from {identifier in expr}
[where expr]] [order by {expr}]

Type Information Expressions

class of classof classof expr
typeof of typeof typeof expr

Miscellenaous Expressions

structure of structof structof expr
body of bodyof bodyof expr

length pf [!] expr [!]

import package import import expr

