EvYEDB Object Definition Language

Version 2.8.8

December 2007

Copyright © 1994-2008 SYSRA

Published by SYSRA
30, avenue Général Leclerc
91330 Yerres - France

home page: http://www.eyedb.org

Contents

1 The Language Specifications L L e e 5
1.1 Commentso L e e e e e e e e e e e 5
1.2 Basic types 6
1.3 Enum types 6
1.4 Array types . . .o o e e 7
1.5 Literal and object types e e 7
1.6 Collection types L 8
1.7 Inheritance L 8
1.8 Constraints L 9
1.9 Referential integrity L 10
1.10 Methods L o e e 11
111 TrigEers . . . o o v o e e e e e e 12
112 Indexes o o o e e e e e e 12
2 The eyedbodl tool oL 14
2.1 Updating a schema e 15
2.2 Generates CH-+ code e, 15
2.3 Generates Java codeo 15
2.4 Generates ODL L 0 oL 16
2.5 Display schema differences 16
2.6 Checking the syntax of an ODL file 16
3 ANNEXES . . . L e e 17
3.1 A simple exampleo e 17
3.2 A more complex example Lo 18
3.3 The eyedbodl usage L e e 20

CONTENTS

The Object Definition Language

The EYEDB Object Definition Language (ODL) is a specification language to define the specifications of object types
based on the ODMG ODL (but not compliant).

ODL ! is not intended to be a full programming language. It is a definition language for object specifications. Database
management systems traditionally provide facilities that support data definition (using a Data Definition Language (DDL)).
The DDL allows users to define their data types and interfaces while the Data Manipulation Language (DML) allows to
create, delete, read update instances of those data types.

ODL is a DDL for objects types. If defines the characteristics of types, including their properties and operations. ODL
defines only the signatures of operations defined in C++ and does not address definitions of the methods that implements
those operations. Operations defined in OQL can be defined in the ODL.

ODL is intended to define object types that can be implemented in a variety of programming languages. Therefore, ODL
is not tied to the syntax of a particular programming language.

EvEDB ODL differs from ODMG ODL from several points:

e ODMG ODL defines class attributes, relationships, method signatures and keys. It supports nested classes, typedef
constructs, constant definitions and exception hints.

e EYEDB ODL defines class attributes, relationships, method signatures, attribute constraints (notnull, unique, collec-
tion cardinality), index specifications and trigger declarations. It does not support nested classes, typedef constructs,
constant definitions and exception hints.

e in EYEDB ODL, any type instance can be both a literal or an object. In ODMG ODL, this property is tied to the
type: all basic types and user defined struct are literal while interfaces and classes are objects. In EYEDB ODL,
any type instance can be an object, even the basic types.

e at last, EYEDB ODL allows to specify whether a method is executed by the server or by the client, and whether it
is a class or instance method.

1 The Language Specifications

The basic concept of the EYEDB object model is the class which, as in any traditional object model, model a set of objects
of similar properties (attributes) and behaviors (methods). The attributes can be basic types, user types, references,
arrays, collections. The methods can be defined in C++ or in OQL (Object Query Language).

ODL allows one to specify classes, attributes, methods, triggers, constraints, enumerate types, indexes and implemen-
tation hints.

We are going to introduced in details all the features of ODL.

1.1 Comments
The ODL comments are like in C++:
e mono-line comments: any characters following // and until the end of the line are comments
e multi-line comments: any characters (including newlines) between /* and */ are comments
For instance:

// this is a simple line comments

/* this is
a multi line
comments */

1ODL is used for shortness to denote EYEDB ODL

6 CONTENTS

1.2 Basic types

The basic types are as follows:

byte 1-byte integer

char 1-byte character

short 2-byte integer

int 4-byte integer

long 8-byte integer

double 8-byte floating point

oid 8-byte internal object identifier
enum 4-byte integer

For instance:

class C {
attribute byte b;
attribute char c;
attribute short s;
attribute int i;
attribute long 1;
attribute double d;
attribute oid o;
};
Notes :
1. The key word attribute is optional:
class C {
byte b;
char c;

/] ...
};

is correct.

2. The grammar does not allow one to gather several attributes on the same line declaration:

class C {
attribute char c1, c2, c3; // NOT correct
/...
};

1.3 Enum types

An enumerate type is denoted by a set of integers mapped to symbols like in C++. The syntax is similar to the C++
syntax, for instance:

enum E1 {
A, // A==0
B, //B==1
c // C==2
};
enum E2 {
D=3, //D-==3
E, // E ==4
F = 100, // F == 100
G, // G == 101
H // H == 102
};
class C {
attribute int i;
El el;
E2 e2;

};

1. THE LANGUAGE SPECIFICATIONS 7

1.4 Array types

The object model supports multi-dimensional fixed or variable size arrays of any type. For instance:

class C {
attribute byte b_a[4]; // fixed length mono-dimensional array
attribute char strl[]; // variable size mono-dimensional array

attribute int i_a[3][4]1([8]; // multi-dimensional fixed size array
attribute long 1_a[][4]([8]; // multi-dimensional variable size array

};
One particular interesting array type is the array of characters, which can be denoted as string as follows:
class C {
attribute string s; // <=> char s[] (unlimited size string)
attribute string<32> bs; // <=> char bs[32] (bounded string)
1

Note that in a multi-dimensional array, only the extreme left dimension can be variable:
class C {

attribute long 1_al[][4]1[8]; // correct

attribute long 1_a2[4]1[]1[8]; // NOT correct

attribute long 1_a2[4][8][]; // NOT correct
};

1.5 Literal and object types

Remember that each object in a set of EYEDB databases has an unique identifier called OID.
A literal attribute is an attribute fully included in the class and has no OID, while an object attribute denotes the reference
to another object with an object identifier. A reference attribute is denoted by a * or a & symbol. For instance:

class C1 {
attribute int i;

};

class C {

attribute C1 1_cl; // literal attribute included in C

attribute Cl *o_cl; // object attribute referenced by C (or &ocl_1)
};

Let c an instance of the class C.
e c includes a literal of type C1 through the attribute 1_c1
e c can reference an object of type C1 through the attributes o_c1

e if c is removed from the database, the attribute 1_c1 is removed at the same time, but the object denoted by o_c1
is not removed

Do not confuse the * ODL meaning and the * C/C++ meaning: in C/C++, the * type modifier denotes an address to
an area of the indicated type instances: it is a pointer to an address. This pointer can be incremented and decremented
to change its location in the area.

In ODL, the * denotes a reference to one and only one object, it is why the & token is also accepted, although the
meaning of this token is a little bit different in C++.

So, in ODL the construct C1 **ocl makes no sense, in the same manner that the construct C1 &&oc1 makes no sense
in C++.
One can have arrays of literal or object as follows:
class C {
attribute C1 1_c1_1[2];
attribute C1 1_c1_2[];
attribute C1 1_c1_3[]1[10][20];

attribute C1 *o_c1_1[4];
attribute C1 *o_c1_2[];
attribute C1 *o_c1_3[]1[4]1[5];

CONTENTS

1.6 Collection types

The EYEDB object model support three types of collections, set, bag and array. A fourth type, list, will be implemented
in a further version:

e a set an unordered collection of elements of the same type not allowing duplicate elements

e a bag a unordered collection of elements of the same type allowing duplicate elements

e an array an ordered collection of elements of the same type allowing duplicate elements

e a list (non yet implemented) is an ordered collections of elements of the same type allowing duplicate elements and
where element insertion and removal is efficiently implemented

An element may be of any type, literal or object and a collection attribute may be a literal or an object, and one can have
arrays of collection, for instance:

class C {
attribute
attribute
attribute

attribute
attribute
attribute

attribute

attribute
attribute

set<int> i_lset; // literal set of int
set<C1> 1_cl_lset; // literal set of Cl1 literals
set<Cl *> o_cl_lset; // literal set of Cl objects

set<int> *i_oset; // object set of int
set<C1> *1_cl_oset; // object set of Cl literals
set<Cl *> *o_cl_oset; // object set of Cl objects

bag<Cl *> o_cl_lbag; // literal bag of Cl objects

array<Cl *> o_cl_larr; // literal array of Cl objects
bag<Cl *> o_cl_lbag[]l; // array of literal bag of Cl objects

// multi-dimensional array of literal bag of set of array of Cl objects

attribute

};

bag<set<array<set<C1l *> > > > x[2][3][4];

The differences between an array collection (i.e. array<type> and an attribute array (i.e. type [1) are:

e a collection array may exists independently from any class as a an attribute array exists only within a class

e the implementation is very different:

— one can have a big collection array (thousand or millions of elements) without loss of performance (if the
collection is well parameterised, see below)). Big attribute array are unefficient

— collection array can have “holes” without loss of performance, for instance an element at index 1 and another
one at index 1000000 and nothing between. An attribute array with holes are unefficient as they are stored
consecutively

— a collection array is heavier than an attribute array, and so is not recommended for little size

1.7 Inheritance

The object model support single inheritance using the keyword extends:

class C1 {
attribute
};

string ci;

class C2 extends C1 {

attribute
};

string c2;

class C3 extends C2 {

attribute
};

string c3;

As in usual object conception, an object of class C2 includes the two attributes c1 and ¢2 and an object of class C3 includes
the three attributes c1, c2 and c3.

In the following construct:

1. THE LANGUAGE SPECIFICATIONS 9

class C4 {
attribute C1 *ocl;
attribute C2 *oc2;
attribute C3 *o0c3;

attribute C1 1lci;

attribute C2 1lc2;

attribute C3 1c3;
};

The attribute ocl may be of type C1, C2 or C3.
The attribute oc2 may be of type C2 or C3.
The attribute oc3 may be of type C3 only.
The attribute 1c1 is of type C1.

The attribute 1c2 is of type C2.

The attribute 1¢3 is of type C3.

1.8 Constraints

The object model supports currently two declarative constraints: notnull and unique. The cardinality constraint on col-
lection is partially implemented and is not currently supported. Non declarative constraints are defined using triggers (see
below).

Note that:
e unique constraint cannot be defined on several attributes and

e unique constraint on an attribute needs an index. The index is not automatically created, it must be defined in the
ODL (see below) or outside using the idxcreate tool.

For instance:

class C {
attribute string si;
attribute string s2;
attribute string s3;

constraint<notnull> on si;

constraint<notnull> on s2;
constraint<unique> on s2;

constraint<unique> on s3;

};

The attribute s1 must not be null.
The attribute s2 must not be null and is unique in the collection of C objects.
The attribute s3 is unique in the collection of C objects.

Constraint and inheritance propagation
By default, constraints are propagated to subclasses, let C2 a subclass of C:

class C2 extends C {
attribute string c2;

};

When one creates an C2 object, the attributes s1 and s2 must not be null and the attributes s2 and s3 must be unique.
Important note: the unique constraint applies separately on each class (C and C2) and not on the set of inheritance
class tree. This means that one can have a C object with a given value for s2 and a C2 object with the same value for s2.

This is not the expected default behavior and will be parameterised in a next version.

If you do no want to propagate automatically a constraint to the subclasses, you need to use the construct propagate =
off as follows:

10 CONTENTS

class C {
attribute string si;
attribute string s2;
attribute string s3;

constraint<notnull, propagate = off> on si;

constraint<notnull> on s2;
constraint<unique, propagate = off> on s2;

constraint<unique> on s3;

};

class C2 extends C {
attribute string c2;

};

The notnull constraint on C::s1 and the unique constraint on C1::s2 will not be propagated to C2, but the notnull
constraint on C: :s1 and the unique constraint on C: :s3 will be propagated to C2.

Constraint on attribute of literal composite type

One can define constraints on attributes of literal composite type attribute, for instance:

class C1 {
attribute string si;
attribute int iil;

};

class C {
attribute C1 cl;

constraint<notnull> on cl.si;
constraint<unique> on cl.il;

};

1.9 Referential integrity

The EYEDB object model support one-to-one, one-to-many and many-to-many relationships.

A relationship between a class A and a class B is materialized by attributes in the two classes of the following types
according to the cardinality of the relationship:

e one-to-one : A contains an attribute of type B * and A contains an attribute of type B *

e one-to-many : A contains an attribute of type collection<B *> (collection is a set or a bag) and A contains an attribute
of type B *

e many-to-many : A contains an attribute of type collection<B *> and A contains an attribute of type collection<B *>

For instance for a one-to-one relationship:
class A {

attribute string sa;

attribute B *b;
};

class B {
attribute string sb;
attribute A *a;

}s

In the previous case, EYEDB maintains only partially the referential integrity: for instance, one cannot create an object A
with an attribute b which refers an non-existent B object. But, if the referenced B object is removed, the attribute b will
still referenced the removed object.

EYEDB can maintain the referential integrity by indicating the inverse directive in the ODL as follows:

1. THE LANGUAGE SPECIFICATIONS 11

class A {
attribute string sa;
relationship B *b inverse B::b; // or inverse b

};

class B {
attribute string sb;
relationship A *a inverse A::b; // or inverse a

};

Note attribute has been replaced by relationship in this case: this is mandatory.
In this case, if the B object referenced by a A object through b is removed, b is set to the null value.
A one-to-many relationship:

class A {
attribute string sa;
relationship set<B *> b_set inverse a;

};

class B {
attribute string sb;
relationship A *a inverse b_set;;

}s

and a many-to-many relationship:

class A {
attribute string sa;
relationship set<B *> b_set inverse a_set;

}s

class B {
attribute string sb;
relationship set<A *> a_set inverse b_set;;

};

1.10 Methods

In ODL, one can declare the signature of C++ and OQL methods and one can defined the body of OQL methods. By
default, a method is executed on the server side.

A method argument can be any basic type, reference on a composite type or mono-dimensional array of basic or composite
type. An argument can be in, out or inout. Argument may be named or unnamed (only type is given), for instance:

class C1 {
attribute string ci;

};

class C2 {
attribute string c2;
int perform(in int size, in string str, out double, in Cl1 &, inout C2 &);

};

Note that the & symbol may be replaced by the * symbol or no symbol as anyhow only a persistent object (not a litteral)
may be passed to a method call.

The C::perform method must be defined in C++ but may be called from OQL or a C++ client. To define a C++
method, refer to the document C++ Binding.

Methods can be overloaded (same name but different signatures), for instance:

class C2 {
attribute string c2;
int perform(in int size, in string str, out double, in Cl1 &, inout C2 &);
int perform(in double, out string mystr);

};

One can define OQL methods in ODL. In this case, the name of the arguments must be given:

12 CONTENTS

class C2 {
attribute string c2;
int append(in string s)
%oql{
this.s2 += s;
return strlen(this.s);
3 S
};

The OQL this variable denotes the calling instance.

A method can be an instance method (the default) or a class method (equivalent to C++ or Java static methods).
To defined a class method, there are two constructs, using the keyword static or classmethod:

class C {

static int performl(in string); // or
classmethod int perform2(in string);

instmethod int perform3(in string); // <=> int perform3(in string)

};

If you want to execute a method on the client side, you must use the keyword client as follows:

class C {
instmethod<client> int performl(in string);
classmethod<client> int perform2(in string);

instmethod<server> int perform3(in string); // <=> int perform3(...)
classmethod<server> int perform4(in string); // <=> classmethod perform3(...)

};

1.11 Triggers

Triggers are server methods which are executed when a particular event occurs on an object: before or after creation,
update, load or delete.
Like methods, a trigger can be written in C++ or in OQL. On the other hand a trigger has no argument but has a name;

class C {
attribute string s;

// C++ triggers
trigger<create_before> c_b();
trigger<create_after> c_a();

trigger<update_before> u_b();
trigger<update_after> u_a();

trigger<load_before> 1_a();
trigger<load_after> 1_b();

trigger<remove_before> r_b();
trigger<remove_after> r_a();

trigger<create_before> c_b2(); // one can have several create_before triggers

// OQL trigger
trigger<create_before> 1_a2()
%oql{
if (strlen(this.s) > 100)
throw "invalid length";
AH
};

1.12 Indexes

Indexes can be either defined in ODL or with the tool eyedbidxadmin. To define indexes on attributes:

1. THE LANGUAGE SPECIFICATIONS 13

class C {
attribute string s;
attribute int i;

index on s;
index on i;

};

Note that we cannot define one index on several attributes.

Index and inheritance propagation

As constraints, indexes may be or not propagated to subclasses. The behavior is the same as for constraints: indexes are
propagated by default to subclasses:

class C {
attribute string s;
attribute int i;

index on s;
index on ij;

};

class C2 extends C {
attribute long 1;

};

Indexes are created for C::s, C::i, C2::s and C2::1.

Note that the index on C::s (resp. C::1i is different from the index on C2::s (resp. C2::1i).
To forbid propagation:

class C {
attribute string s;
attribute int i;

index<propagate=off> on s;
index<propagate=off> on i;

}s

class C2 extends C {
attribute long 1;

};

Indexes are created only for only C::s and C: :i.

Index on attribute of literal composite type

One can create indexes on an attribute of a literal composite type, for instance:

class C1 {
attribute int i;
attribute double d;
};

class C {
attribute string s;
Cl c1; // literal composite type

index on s;
index on cl.i;
index on cl.d;

14 CONTENTS

Index specifications

By default, an index on a number attribute (char, short, int, long and double) is implemented as a BTree, while an index
on either a string or a bounded string is implemented as a Hash index.
The differences between BTree and Hash are as follows:

e BTree indexes allows one to retrieve in an efficient way entries with values greater or lesser than a given value. Hash
indexes does not allows this in a efficient way.

e On big volume of data, BTree indexes are more efficient with the default parameters than Hash indexes with the
default parameters

e On the other hand, for exact match search, a Hash index with good parameters is more efficient than a BTree index
e Usually, Hash index creation is at least four times faster than creating a BTree index

The ODL index specification allows one to change the default index type and parameters of a given target attribute. To
set the type of an index on a given attribute, one uses:

class C {
attribute string<32> s;
attribute int i;

index<type = btree> on s; // default is hash: change to btree
index<type = hash> on i; // default is btree: change to hash
};

Important note: one cannot create a BTree index on a non bounded string. One can set implementation parameters for
indexes as follows:

class C {
attribute string<32> s;
attribute int i;

index<type = btree, hints = "degree = 64;"> on s;
index<type = hash, hints = "key_count = 4096; initial_size = 4096;
extend_coef = 1; size_max = 4096;"> on i;

};

2 The eyedbodl tool

The eyedbodl tool can be used to:
e update a database from an ODL file:

— create a schema

— add methods, triggers, constraints, indexes to classes

— remove methods, triggers, constraints, indexes to classes
— add classes

— remove classes

— add attributes

— rename attributes

— remove attributes

— remove classes

e generate C++ stubs from an ODL file or a database containing a schema

generate Java stubs from an ODL file or a database containing a schema

generate ODL from a database containing a schema

display the differences between an ODL file and a database schema
e check an ODL file syntax

For instance, let schema.odl an ODL file and dbtest a database.

2. THE EYEDBODL TOOL 15

2.1 Updating a schema

To update a database from an ODL file:
eyedbodl -u -d dbtest schema.odl

or:
eyedbodl --update --database=dbtest schema.odl

Important notes:
e All classes defined in the ODL file will be added to the existing schema in the database
e The classes in the database and not in the ODL file will not be removed from the database

e To remove a class from a database, one must use the —-rmcls=class option. Because of class dependancies, the
removal of a class can fail because one needs to remove other classes, for instance collection classes of the class one
want to remove.

In this case, one must delete classes in the good order.

e To remove a entire schema from a database, on must use the —-rmsch option
e The methods, triggers, constraint and indexes in the ODL file and not in the database will be added to the database

e The methods, triggers, constraint and indexes in the databae and not in the ODL file will not be removed from the
database unless the -rmv-undex-attrcomp=yes option is given

e The common indexes (on same attributes) in the ODL file and in the database with a different implementation will
not be updated unless the -—update-index=yes is given

A class C defined in the ODL and in the database with different attributes will have the following behavior:

— an attribute a in a class C of the ODL, not in the class C of the database will be automatically added to the
class C in the database

— an attribute a in a class C in the database, not in the class C in ODL will be automatically removed from the
class C in the database: This operation is not undoable

— an attribute a in a class C in the database and in the class C in ODL with different types will lead to an update
failure

2.2 Generates C++ code

To generate the C++ API from an ODL file:
eyedbodl --gencode=C++ schema.odl

To generate the C++ API from a database:
eyedbodl --gencode=C++ --package=schema -d dbtest

For a given package.odl ODL file, the generated files are as follows:
e package.h, package.cc: the generated C++ API to be used in a client program
e template_package.cc: an example of a client program using the generated API

Makefile.package: an example of Makefile to compile package.cc and template_package.cc: make -f Makefile.package
will compile and link the generated API and template files

packagestubsfe.cc, packagestubsbe.cc: stubs for client and server methods

e packagemthfe-skel.cc, packagemthbe-skel.cc: skeletons for client and server methods

2.3 Generates Java code
To generate the Java API from an ODL file:

eyedbodl --gencode=Java schema.odl

To generate the Java API from a database:
eyedbodl --gencode=Java --package=schema -d dbtest

For a given package.odl ODL file, the package directory contains a Java file for each class defined in the ODL file plus a
Java file for each collection template class used as an attribute in classes of the ODL file.

16 CONTENTS

2.4 Generates ODL

To generate the ODL from a database:

eyedbodl --gencode=0DL -d dbtest # generates on the standard ouput
eyedbodl --gencode=0DL -d dbtest -o schema.odl

2.5 Display schema differences

To display the difference between a schema in an ODL file and a database schema:
eyedbodl --diff schema.odl -d dbtest

2.6 Checking the syntax of an ODL file

To check the syntax of an ODL file:
eyedbodl --checkfile schema.odl

Beside these major options, eyedbodl has a lot of extra options as described when running eyedbodl with the —help
option.

3. ANNEXES

3 Annexes

3.1 A simple example

Here is a simple example that can be found in examples/C++Binding/schema-oriented /share/schema.odl:

enum CivilState {

Lady = 0x10,
Sir = 0x20,
Miss = 0x40

};

class Address {
attribute string street;
attribute string<32> town;
attribute string country;

index on street;

};

class Person {
attribute string name;
attribute int age;
attribute Address addr;
attribute Address other_addrs[];
attribute CivilState cstate;
attribute Person * spouse inverse Person::spouse;
attribute set<Car *> cars inverse owner;
attribute array<Person *> children;
int change_address(in string street, in string town,
out string oldstreet, out string oldtown);
index on name;

};

class Car {
attribute string brand;
attribute int num;
Person *owner inverse cars;

};

class Employee extends Person {
attribute long salary;

};

18 CONTENTS

3.2 A more complex example

Here is a more complex example used for the management of biological databases:

enum StatusType {
running = 0,
done = 1

};

class File {
attribute string path;
attribute string name;
attribute string desc;
attribute set<Import_ctx *> imported_in inverse Import_ctx::file;

constraint<notnull, propagate=on> on name;

};

class Import_ctx {
attribute File * file inverse File::imported_in;
attribute Import * import inverse Import::contexts;
attribute StatusType status;
attribute string comment;
attribute int32 count;
attribute int32 elapsed;
attribute float average;
attribute string start_date;
attribute string last_update;

constraint<notnull, propagate=on> on file;
constraint<motnull, propagate=on> on import;

};

class Import {
attribute Db * related_db inverse Db::imports;
attribute string database_name;
attribute string cvs_tag;
attribute set<Import_ctx *> contexts inverse Import_ctx::import;
attribute string comment;
attribute bool deletable;

instance_method <client, called_from=0QL> time_interval getElapsed()

constraint<unique, propagate=on> on database_name;
constraint<notnull, propagate=on> on database_name;
constraint<unique, propagate=on> on cvs_tag;
constraint<notnull, propagate=on> on related_db;

index< propagate=on> on database_name;
index< propagate=on> on cvs_tag;

};

class Db {
attribute string name;
attribute string title;
attribute int32 version;
attribute set<Import *> imports inverse Import::related_db;
attribute array<File *> files;
attribute set<Db *> divisions;
attribute Import * official;

instance_method <client, called_from=0QL> string [] get_db_names();

constraint<unique, propagate=on> on name;

3. ANNEXES

constraint<notnull, propagate=on> on name;

index< propagate=on> on name;

};

19

20

CONTENTS

3.3 The eyedbodl usage

The usage of the eyedbodl is as follows:

eyedbodl

eyedbodl

eyedbodl

eyedbodl

eyedbodl

--gencode=C++ [--package=<package>] [--output-dir=<dirname>] [--output-file-prefix=<prefix>]
[--schema-name=<schname>] [--namespace=<namespace>] [--class-prefix=<prefix>]
[--db-class-prefix=<dbprefix>] [--attr-style=implicit|explicit] [--dynamic-attr]
[--gen-class-stubs] [--class-enums=yes|no] [--c-suffix=<suffix>] [--h-suffix=<suffix>]

[--export] [--down-casting=yes|no] [--gencode-error-policy=status|exception] [--attr-cache=yes|no]
[--rootclass=<rootclass>] [--no-rootclass] [--cpp=<cpp>] [--cpp-flags=<flags>]

[--no-cpp] <odlfile>|-|-d <dbname>|--database=<dbname> [<openflags>]

--gencode=Java --package=<package> [--output-dir=<dirname>] [--output-file-prefix=<prefix>]
[--schema-name=<schname>] [--class-prefix=<prefix>] [--db-class-prefix=<dbprefix>]
[--attr-style=implicit|explicit] [--dynamic-attr] [--down-casting=yes|no]
[--gencode-error-policy=status|exception] [--cpp=<cpp>] [--cpp-flags=<flags>]

[--no-cpp] <odlfile>|-|-d <dbname>|--database=<dbname> [<openflags>]

--gencode=0DL -d <dbname>|--database=<dbname> [--system-class]

[-o <odlfile>] [<openflags>]

--diff -d <dbname>|--database=<dbname> [--system-class] [<openflags>] [--cpp=<cpp>]
[--cpp-flags=<flags>] [--no-cppl <odlfile>|-

-u|-update -d <dbname>|--database=<dbname> [--db-class-prefix=<dbprefix>] [<openflags>]
[--schema-name=<schname>] [--rmv-undef-attrcomp=yes|no] [--update-index=yes|no]
[--cpp=<cpp>] [--cpp-flags=<flags>] [--no-cpp] [--rmcls={<class>}] [--rmsch] [<odlfile>|-]

eyedbodl --checkfile <odlfile>|-

eyedbodl --help

One must specify one and only one of the following major options:

--gencode=C++ Generates C++ code

--gencode=Java Generates Java code

--gencode=0DL Generates ODL

--update|-u Updates schema in database <dbname>

--diff Displays the differences between a database schema and an odl file
--checkfile Check input ODL file

--help Displays the current information

The following options must be added to the --gencode=C++ or Java option:
<odlfile>|-|-d <dbname>|--database=<dbname> Input ODL file (or - for standard input) or the database name

The following options can be added to the --gencode=C++ or Java option:

--package=<package> Package name

--output-dir=<dirname> Output directory for generated files

—--output-file-prefix=<prefix> Ouput file prefix (default is the package name)
--class-prefix=<prefix> Prefix to be put at the begining of each runtime class
--db-class-prefix=<prefix> Prefix to be put at the begining of each database class
--attr-style=implicit Attribute methods have the attribute name

--attr-style=explicit Attribute methods have the attribute name prefixed by get/set (default)
--schema-name=<schname> Schema name (default is <package>)

--export Export class instances in the .h file

--dynamic-attr Uses a dynamic fetch for attributes in the get and set methods
--down-casting=yes Generates the down casting methods (the default)

--down-casting=no Does not generate the down casting methods

--attr-cache=yes Use a second level cache for attribute value

--attr-cache=no Does not use a second level cache for attribute value (the default)

For the --gencode=C++ option only

--namespace=<namespace> Define classes with the namespace <namespace>
-—c-suffix=<suffix> Use <suffix> as the C file suffix
—-h-suffix=<suffix> Use <suffix> as the H file suffix

--gen-class—-stubs Generates a file class_stubs.h for each class

3. ANNEXES 21

--class-enums=yes Generates enums within a class

--class-enums=no Do not generate enums within a class (default)
--gencode-error-policy=status Status oriented error policy (the default)
--gencode-error-policy=exception Exception oriented error policy

--rootclass=<rootclass> Use <rootclass> name for the root class instead of the package name
--no-rootclass Does not use any root class

The following options can be added to the --gencode=0DL option:
--system-class Generates system class 0ODL

The following option must be added to the --update|-u option:
-d <dbname>|--database=<dbname> Database for which operation is performed

The following options can be added to the --update|-u option:

<odlfile>|- Input ODL file or ’-’ (standard input)
--schema-name=<schname> Schema name (default is package)
--db-class-prefix=<prefix> Prefix to be put at the begining of each database class

--rmv-undef-attrcomp=yes|no Removes (yes) or not (no) the undefined attribute components
(constraint, index and implementation). Default is no

--update-index=yes|no Updates (yes) or not (no) the index with a different
implementation in the DB. Default is no

--rmcls={<class>} Removes the given class list

--rmsch Removes the entire schema

The following options must be added to the --diff option:
-d <dbname>|--database=<dbname> Database for which the schema difference is performed
<odlfile> The input ODL file for which the schema difference is performed

The following options can be added to the --diff option:
--system-class Performs difference on system classes also

The following option must be added to the --checkfile option:
<odlfile>|- Input ODL file or ’-’ (standard input)

The following options can be added when an <odlfile> is set:

—--cpp=<cpp> Uses <cpp> preprocessor instead of the default one
--cpp-flags=<cpp-flags> Adds <cpp-flags> to the preprocessing command
—--no-cpp Does not use any preprocessor

Common Options:

-U <user>|@, --user=<user>|@ User name

-P [<passwd>], --passwd[=<passwd>] Password

--host=<host> eyedbd host

—--port=<port> eyedbd port

--inet Use the tcp_port variable if port is not set
--dbm=<dbmfile> EYEDBDBM database file

--conf=<conffile> Configuration file

--logdev=<logfile> Output log file

--logmask=<mask> Output log mask

—--logdate=on|off Control date display in output log
--logtimer=on|off Control timer display in output log
—--logpid=on|off Control pid display in output log
--logprog=on|off Control progname display in output log
--error-policy=<value> Control error policy: status|exception|abort|stop|echo
--trans-def-mag=<magorder> Default transaction magnitude order

--arch Display the client architecture

-v, —--version Display the version

--help-eyedb-options Display this message

