
EYEDB C++ Binding

Version 2.8.8

December 2007

Copyright c© 1994-2008 SYSRA

Published by SYSRA
30, avenue Général Leclerc
91330 Yerres - France

home page: http://www.eyedb.org

Contents

1 The Generic C++ API . 5
1.1 Initialization . 5
1.2 Connection Setting-up . 6
1.3 Database Opening . 7
1.4 Transaction Management . 7
1.5 Schema and Class Manipulation . 8
1.6 Object Manipulation . 9
1.7 Creating Runtime Objects . 10
1.8 Synchronizing Runtime Objects to Database Objects . 10
1.9 Setting Attribute Values to a Runtime Object . 11
1.10 Loading Database Objects . 12
1.11 Getting Attribute Values from a Runtime Object . 12
1.12 Loading Database Objects using OQL . 13
1.13 Releasing Runtime Objects . 14
1.14 Removing Database Objects . 15

2 The Schema-Oriented Generated C++ API . 15
2.1 Generating a Schema-Oriented C++ API . 15
2.2 The Generated Code . 16
2.3 Constructors and Copy Operator . 18
2.4 Down Casting Methods and Functions . 18
2.5 Selector Methods . 20
2.6 Modidier Methods . 23
2.7 Initialization . 26
2.8 Database Opening . 26

3 Examples . 27
3.1 Generic Query Example . 27
3.2 Generic Storing Example . 29
3.3 Schema-Oriented Query Example . 30
3.4 Schema-Oriented Storing Example . 32
3.5 Simple Administration Example . 34

3

4 CONTENTS

The EyeDB C++ Binding

The C++ binding maps the EyeDB object model into C++ by introducing a generic API and a tool to generate a speficic
C++ API from a given schema, built upon the generic API.

The generic C++ API is made up of about one hundred of classes such as some abstract classes as the object and
class classes and some more concrete classes such as the database and image classes.

Each type in the EyeDB object model is implemented as a C++ class whithin the C++ API: there is a one for one
mapping between the object model and the C++ API.
This mapping follows a very simple naming scheme: each C++ class mapped from a type has the name of this type
prefixed by the namespace eyedb.
For instance, the object type in the EyeDB object model is mapped to the eyedb::Object C++ class and the agregat

type is mapped to the eyedb::Agregat C++ class.

To avoid writing each time the full qualified type name (i.e. eyedb::type), you may use the C++ instruction using

namespace eyedb.

We are going to introduce the main classes and methods through some simple examples.

1 The Generic C++ API

1.1 Initialization

The minimal EyeDB C++ program is as follows:

#include <eyedb/eyedb.h>

int

main(int argc, char *argv[])

{

eyedb::init(argc, argv);

// ...

eyedb::release();

return 0;

}

A few remarks about this code:

1. the file eyedb/eyedb.h contains the whole EyeDB C++ API; except for some specific administration or hacker
tasks, it is not necessary to include any other eyedb files.

2. the EyeDB C++ layer must be initialized using one of the static method init of the namespace eyedb:

(a) static void eyedb::init()

(b) static void eyedb::init(int &argc, char *argv[])

The first method only initializes the EyeDB layer while the second one performs also some command line option
processing. For instance, the option --port=<port> allows you to use the port <port> as the default connection
port to the EyeDB server, while the option -logdev=stderr displays log information on the standard error.

The option --help-eyedb-options displays a brief usage for each standard options:

-U <user>|@, --user=<user>|@ User name

5

6 CONTENTS

-P [<passwd>], --passwd[=<passwd>] Password

--host=<host> eyedbd host

--port=<port> eyedbd port

--inet Use the tcp_port variable if port is not set

--dbm=<dbmfile> EYEDBDBM database file

--conf=<conffile> Configuration file

--logdev=<logfile> Output log file

--logmask=<mask> Output log mask

--logdate=on|off Control date display in output log

--logtimer=on|off Control timer display in output log

--logpid=on|off Control pid display in output log

--logprog=on|off Control progname display in output log

--error-policy=<value> Control error policy: status|exception|abort|stop|echo

--trans-def-mag=<magorder> Default transaction magnitude order

--arch Display the client architecture

-v, --version Display the version

--help-eyedb-options Display this message

Note that all the standard command line options recognized in the argc/argv array are suppressed from this array
by eyedb::init(int &argc, char *argv[]).

3. the last statement eyedb::release() allows you to release all the EyeDB allocated resources and to close opened
databases and connections. Note that this statement is optionnal as all EyeDB allocated resources, opened databases
and connections will be automatically released or closed in the exit() function.

1.2 Connection Setting-up

To manage objects within a database we need to open this database. But before opening any database we need to establish
a connection with the EyeDB server.
The connection to the EyeDB server is realized through the eyedb::Connection class as follows:

eyedb::Connection conn;

conn.open();

A few remarks about this code:

1. the construction of an eyedb::Connection instance (first line of code) does not perform any actual actions: it only
constructs a runtime instance.

2. to establish the connection, one needs to use the eyedb::Connection::open(const char *host=0, const char

*port=0) method. This method has two optionnal arguments: host and port.
If these arguments are not specified, their values are taken from the configuration or from the command line options
--host=<host> and --port=<port> if specified.

3. in case of an error happened during the connection setting-up, a status is returned or an exception is raised depending
on the chosen error policy. The default error policy is the status error policy which means that each EyeDB

method returns a status implemented by the eyedb::Status class. The special status eyedb::Success (in fact a
null pointer) means that the operation has been performed successfully:

• eyedb::Status s;

eyedb::Connection conn;

s = conn.open();

if (s) {

cerr << status;

return 1;

}

The exception error policy means that each EyeDB method throws an exception, implemented by the class
eyedb::Exception, when an error happened:

• try {

eyedb::Connection conn;

conn.open();

}

catch(eyedb::Exception &e) {

cerr << e;

return 1;

}

1. THE GENERIC C++ API 7

Note that eyedb::Status is an alias for const eyedb::Exception *. To use the exception error policy, one
needs to call the following method before any operation:

eyedb::Exception::setMode(eyedb::Exception::ExceptionMode);

Although the exception error policy is not currently the default one in EyeDB, we recommend to use it: it makes
code clearer and safer.
In the following examples we use the exception error policy to avoid any error management noise in the intro-
duced C++ code.

1.3 Database Opening

To open a database one uses the eyedb::Database class as follows:

const char *dbname = argv[1];

eyedb::Database db(dbname);

db.open(&conn, eyedb::Database::DBRW);

1. as the eyedb::Connection constructor, the eyedb::Database constructor does not perform any actual operation:
it constructs a runtime instance.

2. to open a database one uses the eyedb::Database::open methods which takes the following arguments:

(a) a pointer to an opened eyedb::Connection instance.

(b) the opening flag which can be either eyedb::Database::DBRead for read-only opening or eyedb::Database::DBRW
for read-write opening.
Note that there are a dozen of opening modes that are introduced in the reference manual.

(c) the user authentication

(d) the password authentication

The two last arguments are optionnal: if not specified, their values are taken from the configuration file or from the
command line options --user=<user> and --passwd=<passwd>, or from the standard input when using --passwd

without given value.

Note that an EyeDB client can manage several connections and several databases on each connection, for instance:

eyedb::Connection conn_local;

conn_local.open();

eyedb::Connection conn_remote;

conn_remote.open("arzal.zoo.com", 7620);

eyedb::Database db_1("foo");

db_1.open(&conn_local, eyedb::Database::DBRW);

eyedb::Database db_2("EYEDBDBM");

db_2.open(&conn_local, eyedb::Database::DBRead, "guest", "guest");

eyedb::Database db_3("droopy");

db_2.open(&conn_remote, eyedb::Database::DBRW, "droopy", "xyztu");

1.4 Transaction Management

Any object operation - storing or loading for instance - within a database must be done in the scope of a transaction.

A transaction is an unit with atomicity, coherency and integrity.

1. Atomicity means that the transaction modifications are either realized (commit) or not realized at all (rollback or
abort).

2. Coherency means that a transaction starts from a coherent database state, and leaves the database in a coherent
state.

3. Integrity means that a transaction modification is not lost, even in case of a process, operating system or hardware
failure.

8 CONTENTS

A transaction scope is composed of a starting point, transactionBegin, and an ending point, transactionCommit or
transactionAbort:

eyedb::Database db(dbname);

db.open(&conn, eyedb::Database::DBRW);

db.transactionBegin();

// ... object operations

db.transactionCommit();

A call to eyedb::Database::transactionCommit() means that all the operations performed in the transaction scope will
be stored in the database, while a call to eyedb::Database::transactionAbort() means that all the operations will be
forgotten.

Currently, EyeDB does not support nested transactions but it allows you to write code such as:

db.transactionBegin(); // level 0 begin

// ... object operations

db.transactionBegin(); // level 1 begin

// ... object operations

db.transactionAbort(); // level 1 abort

// ... object operations

db.transactionCommit(); // level 0 commit

But the abort at level 1 is without effect: it will not be performed; only the commit at level 0 will be performed.

One can give parameters to the transaction that one begins by setting an optional argument of type eyedb::TransactionParams
to the transactionBegin method. The TransactionParams type is composed of the following public attributes :

1. the trsmode argument controls the transaction mode,

2. the lockmode argument controls the object lock policy,

3. the recovmode argument controls the recovery mode,

4. the magorder argument controls the size of the allocated tables for the transaction,

5. the ratioalrt argument controls the error returned if ratioalrt != 0 and trans object number ¿ ratioalrt * magorder

6. the wait timeout argument controls wait timeout value.

For instance :

TransactionParams params; // create params with default values

params.lockmode = eyedb::ReadNWriteX; // objects are not locked for reading

// and locked exclusive for writing

params.magorder = 100000000; // transaction can deal with about

// 100 millions of objects

db.transactionBegin(params);

Refer to the reference manual to get more information about these arguments.

1.5 Schema and Class Manipulation

The EyeDB C++ API provides runtime facilities to manipulate the EyeDB classes. In fact, as the class class inherits
from the class object, EyeDB classes can be manipulated as objects.

A class is composed of a list of attributes, constraints, variables, methods, triggers and indexes.

The classes are gathered through a schema instance tied to each database.

A class can be a system class, for instance the class class, the class object, the class agregat or a user class, for
instance the class Person, the class Employee.

To illustrate this object model, we are going to show how to display the user classes of a given database:

1. THE GENERIC C++ API 9

eyedb::Database db(dbname);

db.open(&conn, eyedb::Database::DBRW);

db.transactionBegin();

eyedb::LinkedListCursor c(db.getSchema()->getClassList());

eyedb::Class *cls;

while (c.getNext((void*&)cls))

if (!cls->isSystem())

cout << cls;

db.transactionCommit();

As shown here, this code is very simple:

1. database opening as we have seen before.

2. linked list cursor creation on the database schema class list.

3. display of each class in the list which is not a system class.

For instance, to display all the classes of type struct which contains an attribute named age:

eyedb::LinkedListCursor c(db.getSchema->getClassList());

eyedb::Class *cls;

while (c.getNext((void*&)cls))

if (cls->asStructClass()) {

int attr_cnt;

const eyedb::Attribute **attrs = cls->getAttributes(attr_cnt);

for (int i = 0; i < attr_cnt; i++)

if (!strcmp(attrs[i]->getName(), "age")) {

cout << cls;

break;

}

}

1.6 Object Manipulation

There are two types of objects: runtime objects and database objects.
Runtime objects are the OML (Object Manipulation Language) objects, for instance C++ or Java objects, while the
database objects are the objects stored in a database.

There are two types of runtime objects: persistent runtime objects and transient runtime objects.
A runtime object is persistent if it is tied to a database object. Otherwise, it is transient.

Contrary to some other OODBMS, EyeDB does not provide an automatic synchronisation between persistent runtime
objects and database objects.
When setting values on a persistent runtime object, we do not modify the tied database object. We must call the store

method on the persistent runtime object to update the tied database object.

Note that any persistent runtime object manipulation must be done in the scope of a transaction.

To illustrate object manipulations, we introduce a simple concrete example. This example will be used in the whole
continuation of this chapter.

The example is as follows:

//

// person.odl

//

enum CivilState {

Lady = 0x10,

Sir = 0x20,

Miss = 0x40

};

class Address {

10 CONTENTS

attribute string street;

attribute string<32> town;

attribute string country;

};

class Person {

attribute string name;

attribute int age;

attribute Address addr;

attribute Address other_addrs[];

attribute CivilState cstate;

attribute Person * spouse inverse Person::spouse;

attribute set<Car *> cars inverse owner;

attribute array<Person *> children;

int change_address(in string street, in string town,

out string oldstreet, out string oldtown);

static int getPersonCount();

index on name;

};

class Car {

attribute string brand;

attribute int num;

Person *owner inverse cars;

};

class Employee extends Person {

attribute long salary;

};

This file is located at prefix/share/doc/eyedb/examples/C++Binding/schema-oriented/share/schema.odl.

1.7 Creating Runtime Objects

Using the C++ API, we cannot create directly a database object. We must create first a runtime object.
To create a runtime object we invoke the newObj method of the object class.
For instance, to create a runtime Person object, we need to invoke the newObj method of the Person runtime class as
follows:

eyedb::Class *cls = db.getSchema()->getClass("Person");

eyedb::Object *p = cls->newObj(&db);

The eyedb::Class::newObj(eyedb::Database * = 0) is the class instantiation method for both persistent and transient
object.
A transient object is created using the newObj without any argument, while a persistent object is created using the same
method with a valid database runtime pointer.

Note that as long as the store method has not been called, the persistent runtime object is not yet tied to a database
object.
So, if we follow strictly the definition of runtime objects, it is not yet a persistent runtime object; but as soon as a runtime
object is created using the newObj method with a valid database pointer, we will say that it is persistent.

1.8 Synchronizing Runtime Objects to Database Objects

When a persistent object is stored in the database using the store method, an unique object identifier OID is allocated to
this object.
This OID can be acceded using the method eyedb::Object::getOid(), for instance to display the allocated OID:

eyedb::Object *p = cls->newObj(&db);

cout << "before storing: " << p->getOid() << endl;

p->store();

cout << "after storing: " << p->getOid() << endl;

1. THE GENERIC C++ API 11

The output displayed by the previous code is something as follows:

before storing: NULL

after storing: 1456.3.38475637:oid

As shown here, before the first call of the store method, the OID is not set; a NULL is displayed.
The created OID is composed of three fields:

1. the object number : 1456

2. the database identifier : 3

3. a magic number : 38475637

The database identifier designates, in an unique way, a database while the object number designates, in an unique way,
an object within a database.
The magic number, which is a random generated number, ensures more security in the object identification process.

1.9 Setting Attribute Values to a Runtime Object

Assume that we want to set a name and a age values to a Person instance. Here is a way to do so:

eyedb::Class *cls = db.getSchema()->getClass("Person");

eyedb::Object *p = cls->newObj(&db);

// getting attributes from class

const eyedb::Attribute *attr_name = cls->getAttribute("name");

const eyedb::Attribute *attr_age = cls->getAttribute("age");

// setting name attribute value

attr_name->setSize(p, strlen("john")+1);

attr_name->setValue(p, (eyedb::Data)"john", strlen("john")+1, 0);

// setting age attribute value

eyedb::_int32 age = 27;

attr_age->setValue(p, (eyedb::Data)&age, 1, 0);

We need to do a few remarks about this code:

1. to get specific named attribute within a class, we use the method eyedb::Class::getAttribute(const char *).
This method returns a pointer to an eyedb::Attribute which contains a complete description of this attribute:
type, name, size, position and so on.

2. to set an attribute value for the instance p, we use the method eyedb::Attribute::setValue(eyedb::Object *o,

eyedb::Data data, int nb, int from) whose arguments are as follows:

(a) eyedb::Object *o: the runtime object pointer to modify.

(b) eyedb::Data data: the pointer to the attribute value to set.

(c) int nb: for an array, the number of values to set.

(d) int from: for an array, the starting index of the values to set.

3. the eyedb::Attribute::setSize(eyedb::Object *, eyedb::Size) method is used for the attribute name because
this attribute is of variable size (remember the schema description : string name).
So, before setting the attribute value, we must set the size of this attribute value.

4. remember that the database object tied to this persistent object has not been changed in the database: only the
transient values have been changed.
To change the database object, one needs to use the method eyedb::Object::store() as follows:

p->store();

The store method allows you to synchonize the transient values of a persistent object with the database.

To avoid all this class and attribute manipulation and to deal with direct access attribute methods, one needs
to use the eyedbodl tool which allows you to generate specific C++ code from a specific database schema.

For instance, using this tool, the previous code becomes:

12 CONTENTS

Person *p = new Person(&db);

p->setName("john");

p->setAge(27);

p->store();

The class Person, the methods setName and setAge have been generated by the eyedbodl tool in a very simple way.
Refer to the second part of this chapter the Schema-Oriented Generated C++ API.

1.10 Loading Database Objects

To load an object from a database, one needs to give its OID to the eyedb::Database::loadObject method, for instance:

eyedb::Oid oid("1456.3.38475637:oid");

eyedb::Object *o;

db.loadObject(oid, o);

cout << "object " << oid << " is of class " << o->getClass()->getName()

<< endl;

cout << o;

The previous code loads the object from the database, displays its oid and class name and displays the whole object.

1.11 Getting Attribute Values from a Runtime Object

The process to get attribute values from a runtime object is very similar to the process to set attribute values.
For instance to get the name and age attribute values of the previous loaded object, one can do as follows:

eyedb::Oid oid("1456.3.38475637:oid");

eyedb::Object *o;

db.loadObject(oid, o);

// getting attributes from class

const eyedb::Attribute *attr_name = cls->getAttribute("name");

const eyedb::Attribute *attr_age = cls->getAttribute("age");

// getting name attribute size

eyedb::Size name_length;

attr_name->getSize(o, name_length);

// getting name attribute value

char *name = new char[name_length];

attr_name->getValue(o, (eyedb::Data *)name, name_length, 0);

cout << "name is : " << name << endl;

delete [] name;

// getting age attribute value

eyedb::_int32 age;

attr_age->getValue(o, (eyedb::Data *)&age, 1, 0);

cout << "age is : " << age << endl;

To get an attribute value we use the method eyedb::Attribute::getValue(const eyedb::Object *o, eyedb::Data

*data, int nb, int from, eyedb::Bool * isnull = 0) whose arguments are as follows:

1. eyedb::Object *o: the runtime object pointer.

2. eyedb::Data data: the pointer to the attribute value to get: this pointer must be allocated correctly according to
the returned value type. It is why we get first the size of the name attribute value to allocate the returned buffer
with a valid size.

3. int nb: for an array, the number of values to get.

4. int from: for an array, the starting index of the values to get.

5. eyedb::Bool *isnull: an optionnal boolean to check if the attribute value is null (i.e. not initialized).

If we want to get the spouse value of the loaded person, we must do something a little bit more complicated:

1. THE GENERIC C++ API 13

eyedb::Oid oid("1456.3.38475637:oid");

eyedb::Object *o;

db.loadObject(oid, o);

// getting spouse attribute from class

const eyedb::Attribute *attr_spouse = cls->getAttribute("spouse");

eyedb::Oid spouse_oid;

attr_spouse->getOid(o, &spouse_oid);

if (spouse_oid.isValid()) {

eyedb::Object *spouse;

db.loadObject(spouse_oid, spouse);

cout << "spouse is: " << spouse;

}

To get the spouse attribute value, we need to get first the spouse OID using the eyedb::Attribute::getOid method on
the spouse attribute.
Then, if the OID is valid, we load the spouse from the found OID.

Once again, using the eyedbodl tool, all the previous code becomes very simple:

eyedb::Oid oid("1456.3.38475637:oid");

eyedb::Object *o;

db.loadObject(oid, o);

Person *p = Person_c(o);

cout << "name is : " << p->getName() << endl;

cout << "age is : " << p->getAge() << endl;

cout << "spouse is: " << p->getSpouse();

1.12 Loading Database Objects using OQL

We have seen in the previous section how to load a database object from its OID. The problem is that the OID is a rather
hidden concept and there are very few chances to know an object OID before having loaded it.

To load database objects it seems more reasonnable to use a query language such as OQL.
The EyeDB C++ API allows you to perform any OQL queries using the class eyedb::OQL.
For instance to get all Person whose age is less than a given value:

db.transactionBegin();

eyedb::OQL q(&db, "select Person.age < %d", given_age);

eyedb::ObjectArray obj_arr(eyedb::True);

q.execute(obj_arr);

for (int i = 0; i < obj_arr.getCount(); i++)

cout << obj_arr[i];

A few remarks about this code:

1. remember that any persistent runtime object manipulation must be done in the scope of a transaction: it is why
the first statement is a call to the transactionBegin method. In most of the previous code examples, we volontary
omit this call.

2. the class eyedb::OQL is used to perform any OQL query. The main constructor eyedb::OQL(eyedb::Database *db,

const char *fmt, ...) allows you to make an OQL query in a simple way. The arguments are as follows:

(a) the database pointer within which to perform the query.

(b) the format of the query in a sprintf style.

(c) the other arguments are the arguments related to the previous format.

3. to get all the objects returned by the query, we use the eyedb::OQL::execute(eyedb::ObjectArray &) method.
This method filled the object array reference given as input parameter.

4. the method eyedb::ObjectArray::getCount() returned the number of objects contained in an object array.

14 CONTENTS

5. the [] eyedb::ObjectArray operator has been overloaded to allow you to perform direct access to the contained
objects: obj arr[i] is the object #i within the object array.

6. the argument eyedb::True to the eyedb::ObjectArray constructor means that we want that all the contained
objects to be deleted when this object array will be deleted.

Sometimes we want to perform a query to get only a part of some objects.
For instance, to get the name of all persons whose age is less than a given value, there are two ways:

1. the first one is to get all the persons whose age is less than the given value using an OQL query, and then get their
name value as follows:

eyedb::OQL q(&db, "select Person.age < %d", given_age);

eyedb::ObjectArray obj_arr(eyedb::True);

q.execute(obj_arr);

const eyedb::Attribute *attr_name = cls->getAttribute("name");

for (int i = 0; i < obj_arr.getCount(); i++) {

// getting name attribute size

eyedb::Size name_length;

attr_name->getSize(obj_arr[i], name_length);

// getting name attribute value

char *name = new char[name_length];

attr_name->getValue(obj_arr[i], (eyedb::Data *)name, name_length, 0);

cout << "name of #" << i << " is : " << name << endl;

delete [] name;

}

2. the second one is to perform directly an appropriate query as follows:

eyedb::OQL q(&db, "(select Person.age < %d).name", given_age);

eyedb::ValueArray val_arr;

q.execute(val_arr);

for (int i = 0; i < val_arr.getCount(); i++)

cout << "name of #" << i << " is : " << val_arr[i].str << endl;

In this case, the returned value are not object values but string values. So we cannot use the execute(eyedb::ObjectArray&)
method to get these values but the more general form execute(eyedb::ValueArray&)

An eyedb::ValueArray instance is an array of eyedb::Value instances. The eyedb::Value class is the most general
form of an OQL returned value. It can take the form of a integer, a string, an OID, an object and so on.

Note that this second way is more efficient as only the person name are returned from the server and not the
full object.

1.13 Releasing Runtime Objects

All the runtime objects which have been allocated by the client code or by a load or query method must be released by
the client code.

To release an eyedb::Object or inherited class instance, we must use the eyedb::Object::release() method as fol-
lows:

eyedb::Object *o1 = cls->newObj();

// ...

o1->release();

eyedb::Object *o2;

db.loadObject(oid, o2);

// ...

o2->release();

2. THE SCHEMA-ORIENTED GENERATED C++ API 15

The C++ delete operator is forbiden: if you try to use this operator on any eyedb::Object instance, you will get an
error message at runtime.

Note that if you release a persistent runtime object you do not release the tied database object.

Refer to the section Memory Management to understand the whole memory policy of the C++ API.

1.14 Removing Database Objects

To remove a database object, we need to use the eyedb::Object::remove() method or the eyedb::Database::removeObject(const
eyedb::Oid &oid) method, for instance:

db.transactionBegin();

o->remove();

o->release();

db.transactionCommit();

or:

db.transactionBegin();

db.removeObject(oid);

db.transactionCommit();

When calling one of the previous remove methods, it is not necessary to call the store method after.

2 The Schema-Oriented Generated C++ API

The generic C++ API allows you to manipulate any object within any database: this is its force. But, as shown in the
previous section, object manipulation is sometimes very heavy as the provided methods are too much generic.

To enrich the generic API, one introduces a tool to generate specific C++ code from a specific ODL schema: the generated
API is call a schema-oriented API.

The schema-oriented API contains mainly:

1. a C++ class for each class defined in the ODL schema.

2. selector and modifier methods in the C++ class for each attribute defined in the ODL class.

3. user friendly selector and modifier methods for array and collection attributes.

4. a C++ method mapped on each method defined in the ODL class.

5. a specific C++ database class used to open a database and check its schema.

6. some utilities such as down-casting funtions.

The schema-oriented API is designed so that the object manipulation for this schema is the most comfortable as possible.

2.1 Generating a Schema-Oriented C++ API

To generate a schema-oriented C++ API, one needs a well formed ODL file describing a schema or a reachable database
containing this schema and the eyedbodl tool.
To generate a schema-oriented C++ API, the minimal eyedbodl invocation is as follows:

eyedbodl --gencode=C++ <odlfile>

or

eyedbodl --gencode=C++ --package=<package> -d <database>

For instance, to generate the schema-oriented C++ API for the person.odl schema:

eyedbodl --gencode=C++ person.odl

16 CONTENTS

For a given package.odl ODL file, the generated files are as follows:

• package.h, package.cc: the generated C++ API to be used in a client program

• template package.cc: an example of a client program using the generated API

• Makefile.package: an example of Makefile to compile package.cc and template package.cc: make -f Makefile.package
will compile and link the generated API and template files

• packagestubsfe.cc, packagestubsbe.cc: stubs for client and server methods

• packagemthfe-skel.cc, packagemthbe-skel.cc: skeletons for client and server methods

The eyedbodl tool contains a lot of command line options to control the generated code.

There is one mandatory option:
odlfile|-|-d dbname|--database=dbname : Input ODL file (or - for standard input) or the database name
and some optionnal options:

--package=package : Package name
--output-dir=dirname : Output directory for generated files
--output-file-prefix=prefix : Ouput file prefix (default is the package name)
--class-prefix=prefix : Prefix to be put at the begining of each runtime class
--db-class-prefix=prefix : Prefix to be put at the begining of each database class
--attr-style=implicit : Attribute methods have the attribute name
--attr-style=explicit : Attribute methods have the attribute name prefixed by get/set (default)
--schema-name=schname : Schema name (default is package)
--export : Export class instances in the .h file
--dynamic-attr : Uses a dynamic fetch for attributes in the get and set methods
--down-casting=yes : Generates the down casting methods (the default)
--down-casting=no : Does not generate the down casting methods
--attr-cache=yes : Use a second level cache for attribute value
--attr-cache=no : Does not use a second level cache for attribute value (the default)
--namespace=namespace : Define classes with the namespace namespace

--c-suffix=suffix : Use suffix as the C file suffix
--h-suffix=suffix : Use suffix as the H file suffix
--gen-class-stubs : Generates a file class stubs.h for each class
--class-enums=yes : Generates enums within a class
--class-enums=no : Do not generate enums within a class (default)
--gencode-error-policy=status : Status oriented error policy (the default)
--gencode-error-policy=exception : Exception oriented error policy
--rootclass=rootclass : Use rootclass name for the root class instead of the package name
--no-rootclass : Does not use any root class

For instance to generate a schema-oriented C++ API in the directory tmp, prefixing the runtime classes with pp, suffixing
C++ files with .cpp, we invoke eyedbodl as follows:

eyedbodl --gencode C++ --output-dir=tmp --class-prefix=pp \

--c-suffix=.cpp person.odl

2.2 The Generated Code

Seven files are generated:

1. the header C++ file: package.h (for instance person.h)

2. the core C++ file: package.cc (for instance person.cc)

3. files for frontend and backend user method support:

(a) stubs: packagestubsfe.h and packagestubsbe.h

(b) skeleton: packagemthfe-skel.h and packagemthbe-skel.h

(c) a template Makefile: Makefile.package

(for instance Makefile.person)

2. THE SCHEMA-ORIENTED GENERATED C++ API 17

The use of the generated files for the user methods are introduced in the chapter Methods and Triggers.

The header file contains C++ class declarations and function prototypes.
The following classes are generated:

1. the package class whose name is the package name and which contains a static init method, a static release method
and two methods for schema update within a database, for instance:

class person {

public:

static void init();

static void release();

static eyedb::Status updateSchema(eyedb::Database *db);

static eyedb::Status updateSchema(eyedb::Schema *m);

};

(a) the person::init() method must be called before any use of the schema-oriented API.

(b) the person::release() should be called after any use of this API, but this call is not mandatory as this
method only release allocated runtime memory.

(c) the person::updateSchema() methods are not generally called directly by client code.

2. the database class whose name is packageDatabase inherited from the generic eyedb::Database class.
This class overloads two inherited methods: the open and the loadObject realize methods.
The overloaded open method has two purposes:

• database opening.

• schema checking: it checks that the opened database schema is strictly identical to the runtime schema.

The loadObject realize method has one purpose:

• runtime object construction: for any object loaded from the database whose class is one of the generated
classes (for instance Person, Car), it call the generated class constructor. For instance if an object loaded is of
class Person it will perform a new Person(db) to construct correctly the loaded object.

Note that to use the generated schema-oriented API it is not mandatory to use the generated database class: you
can use the genetic eyedb::Database class; there is a lot of cases where you will get no trouble. But to avoid any
potential trouble, it is strongly recommended to use the generated database class.

3. a root class which is the superclass of all generated classes, except the package and the database classes.
This class is used to facilitate the down casting process.
If the command line option -no-rootclass is specified, the root class is not generated.
Unless its name is given using the command line option -rootclass name, its name is Root.

4. for each ODL class, a C++ class is generated with the same name possibly prefixed by a string if specified by the
command line option -class-prefix. This class is inherited from the root class.

The generated class contains the following method families:

(a) constructors.

(b) down casting methods.

(c) selector attribute methods.

(d) modifier attribute methods.

(e) methods mapped from ODL backend or frontend methods.

(f) client stubs.

(g) the destructor.

18 CONTENTS

2.3 Constructors and Copy Operator

For each C++ class, two constructors and the assignment operator are generated:

Person(eyedb::Database * = 0);

Person(const Person& x);

Person& operator=(const Person& x);

• The first constructor is used to instantiate transient or persistent objects.
The following code:

Person *p = new Person(&db);

does nearly the same things as:

eyedb::Class *cls = db.getSchema()->getClass("Person");

eyedb::Object *o = cls->newObj(&db);

The major difference is that in the second case, an eyedb::Object instance (in fact an eyedb::Struct instance) is
created while in the first case an Person (which inherits from eyedb::Struct) instance is created.
But in both cases, you can use the instantiated object to set and get Person attribute values and to synchronize the
runtime object with the database.
To set or get attribute values in the second case, you need to use the eyedb::Attribute::setValue or eyedb::Attribute::getValue
methods while in the first case, you may use the generated selector and modifier methods such as Person::setName
or Person::getAge.

• The second constructor is the copy constructor. For instance:

Person *p1 = new Person(&db);

Person p2 = *p1;

• At last, the assignment operator can be used as follows:

Person *p1 = new Person(&db);

Person *p2 = new Person(&db);

*p2 = *p1;

2.4 Down Casting Methods and Functions

Unless the command line option -down-casting no has been used, down casting methods and functions have been gener-
ated.
For instance, the following methods have been generated for the Person class:

class Person : public Root {

// ...

virtual Person *asPerson() {return this;}

virtual const Person *asPerson() const {return this;}

virtual Employee *asEmployee() {return (Employee *)0;}

virtual const Employee *asEmployee() const {return (const Employee *)0;}

// ...

};

These methods are very useful to process safe down casting. The down casting may be used in several cases. For instance,
if you instantiate an Employee object as follows:

extern void display(Person *);

Employee *empl = new Employee(&db);

display(empl);

the display function expects a Person instance: when calling it with an Employee instance, we do not make any mistake
as the Employee class inherits from the Person class.
Assume now, that the display function displays the name and the age of the Person instance and its salary if the instance
is an employee. Using the down casting method Person::asEmployee(), one can do as follows:

2. THE SCHEMA-ORIENTED GENERATED C++ API 19

void display(Person *p)

{

cout << "name : " << p->getName() << endl;

cout << "age : " << p->getAge() << endl;

if (p->asEmployee())

cout << "salary : " << p->asEmployee()->getSalary() << endl;

Note that the call to this down casting method cost nearly nothing. Without the help of the down casting method, the
previous code becomes:

void display(Person *p)

{

cout << "name : " << p->getName() << endl;

cout << "age : " << p->getAge() << endl;

if (!strcmp(p->getClass()->getName(), "Employee"))

cout << "salary : " << ((Employee *)p)->getSalary() << endl;

which is rather less efficient and less elegant.

There is another case to use down casting methods and functions is when loading a database object.
When loading a database object (for instance a Person database object) using the eyedb::Database::loadObject, we get
a generic eyedb::Object instance, not a Person instance nor a Employee instance.
Nevertheless, in the case of a Person database object has been loaded, a Person persistent runtime object has been cor-
rectly constructed by the generated API.
So, it is legitimate to down cast the loaded eyedb::Object instance to a Person instance as follows:

eyedb::OQL q(&db, "select Person.age < %d", given_age);

eyedb::ObjectArray obj_arr(eyedb::True);

q.execute(obj_arr);

for (int i = 0; i < obj_arr.getCount(); i++)

{

Person *p = (Person *)obj_arr[i];

cout << "name: " << p->getName() << endl;

}

The cast:

Person *p = (Person *)obj_arr[i];

is legal according to the context but is not safe because neither static (i.e. compiler level) check nor runtime check is
performed.
Safe down casting functions are generated by eyedbodl as follows:

inline Person *Person_c(eyedb::Object *o)

{

Root *x = personDatabase::asRoot(o);

if (!x) return (Person *)0;

return x->asPerson();

}

This function allows you to perform compiler and runtime check as follows:

for (int i = 0; i < obj_arr.getCount(); i++)

{

Person *p = Person_c(obj_arr[i]);

if (p)

cout << "name: " << p->getName() << endl;

}

in the case of the loaded object is not a real Person instance, the Person c function returns a null pointer.

It is strongly recommended to make use of these safe down casting methods and functions instead of performing manual
down casting.

20 CONTENTS

2.5 Selector Methods

For each attribute in the ODL class, eyedbodl generates one or more selector methods.
The number and the form of the selector methods depends on the type of the attribute.
An attribute type is a combination of:

1. a primitive type which can take the form of a:

(a) basic type: for instance int32, char or double.

(b) system type: for instance class, object, image.

(c) user type: for instance Person, Employee, set<Car *>.

(d) user enum: for instance CivilState.

2. the literal or object property:

(a) the literal property means that the attribute value has no identifier (i.e. OID).

(b) the object property means that the attribute value has an identifier.

3. an optional array modifier:

(a) multi-dimensionnal and variable size array are supported.

For instance, the attribute:

attribute Address addr;

can be described as {primitive type = Address, property = literal, array = nil}

The form of the selector methods are designed according to the following attribute type family:

1. literal basic or user enum type : int32 age, CivilState cstate.
2. literal string : string<32> town, string name, string country.
3. literal user type : Address addr

4. object basic, user or system type : Person *spouse

5. object collection type : array<Person *> children, set<Car *>> cars.

All those type families support in an orthogonal way an multi-dimenstion array modifier.

Literal Basic or User Enum Type

The selector method is under the form:

<attribute primitive type> get<attribute name>(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const

for instance for the age attribute:

eyedb::_int32 getAge(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

Every selector method has the two following optional arguments:

1. isnull : a pointer to a eyedb::Bool value.
If this pointer is not null, the selector method assigns it to eyedb::False if the attribute value is not null, otherwise
it assigns it to eyedb::True.

2. status : a pointer to a eyedb::Status value.
If this pointer is not null, the selector method assigns to eyedb::Success is the operation is successul, otherwise
is assigns to the error status. Note that if you are using the exception error policy (the recommended one), this
argument is not useful. If you have generated the schema-oriented C++ API using the -error-policy exception

option, the status argument will not be generated.

2. THE SCHEMA-ORIENTED GENERATED C++ API 21

Literal String

The selector methods are under the form:

const char *get<attribute name>(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const

char get<attribute name>(unsigned int a0,

eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const

for instance for the name attribute:

const char *getName(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

char getName(unsigned int a0, eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

The first selector method is to get the full string value of the attribute while the second one is to get a specific character
within this string value. The argument a0 is the number of the character.

Literal User Type

The selector methods are under the form:

<attribute primitive type>* get<attribute name>(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0)

const <attribute primitive type>* get<attribute name>(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const

for instance for the addr attribute:

Address *getAddr(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) ;

const Address *getAddr(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

Note than the returned value cannot be a null pointer as this is literal attribute fully included in the instance.

Object Basic, User or System Type

The selector methods are under the form:

<attribute primitive type>* get<attribute name>(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0)

const <attribute primitive type>* get<attribute name>(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const

for instance for the spouse attribute:

Person *getSpouse(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) ;

const Person *getSpouse(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

eyedb::Oid getSpouseOid(eyedb::Status *status = 0);

Note that:

1. the returned value can be a null pointer as this a is an object attribute with its own life.

2. for this same reason, there is a method to get the identifier of this object without loading it.

3. this selector method automatically loads the related object attribute when called.

Object Collection Type

As introduced in previous chapter, there are two main types of collections: ordered (or indexed) collections - array and
list - and not ordered collections - set and bag. The generated methods for these two main types are similar but a little
bit different.
For the not ordered collections, the selector method are as follows:

<collection type>* get<attribute name>Coll(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) ;

unsigned int get<attribute name>Count(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const;

const <collection type>* get<attribute name>Coll(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const;

22 CONTENTS

eyedb::Oid get<attribute name>Oid(eyedb::Status *status = 0);

const <collection object type>* get<attribute name>At(unsigned int ind,

eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const;

<collection object type>* get<attribute name>At(unsigned int ind,

eyedb::Bool *isnull = 0,

eyedb::Status *status = 0);

eyedb::Oid get<attribute name>OidAt(unsigned int ind,

eyedb::Status *status = 0) const;

where <collection type> can be:

1. eyedb::CollSet for a collection set

2. eyedb::CollBag for a collection bag

and where <collection object type> is the type which is composing the collection.

Note that if the collection is not a literal but an object, the following extra method returning the collection oid is
generated:

eyedb::Oid get<attribute name>Oid(eyedb::Status *status = 0);

For the cars attribute the following code is generated:

eyedb::CollSet *getCarsColl(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) ;

unsigned int getCarsCount(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

const eyedb::CollSet *getCarsColl(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

const Car *getCarsAt(unsigned int ind, eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const;

Car *getCarsAt(unsigned int ind, eyedb::Bool *isnull = 0, eyedb::Status *status = 0);

eyedb::Oid getCarsOidAt(unsigned int ind, eyedb::Status *status = 0) const;

Let have a look to each method:

1. eyedb::CollSet *getCarsColl(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) ;

const eyedb::CollSet *getCarsColl(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

returns the collection object (const and not const methods).

2. unsigned int getCarsCount(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

returns the collection item count.

3. const Car *getCarsAt(unsigned int ind, eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const;

Car *getCarsAt(unsigned int ind, eyedb::Bool *isnull = 0, eyedb::Status *status = 0);

returns the #ind element in the collection. As the collection is not ordered, the index of the element to get depends
on the load ordering and is not specified. These array-oriented methods are generated for user convenience because
it is somewhat easier to scan an array that to scan an unordered set.

4. eyedb::Oid getCarsOidAt(unsigned int ind, eyedb::Status *status = 0) const;

returns the #ind oid in the collection. The remark about the index of the element is the same as above.

For the ordered collections, the selector method are as follows:

<collection type>* get<attribute name>Coll(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) ;

unsigned int get<attribute name>Count(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const;

const <collection type>* get<attribute name>Coll(eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const;

eyedb::Oid get<attribute name>Oid(eyedb::Status *status = 0);

const <collection object type>* retrieve<attribute name>At(unsigned int ind,

eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const;

<collection object type>* retrieve<attribute name>At(unsigned int ind,

eyedb::Bool *isnull = 0,

eyedb::Status *status = 0);

eyedb::Oid retrieve<attribute name>OidAt(unsigned int ind,

eyedb::Status *status = 0) const;

2. THE SCHEMA-ORIENTED GENERATED C++ API 23

where <collection type> can be:

1. eyedb::CollArray for a collection array

2. eyedb::CollList for a collection list
Note that the collection list are currently not implemented in EyeDB .

and where <collection object type> is the type which is composing the collection.

Note that if the collection is not a literal but an object, the following extra method returning the collection oid is
generated:

eyedb::Oid get<attribute name>Oid(eyedb::Status *status = 0);

For the children attribute the following code is generated:

eyedb::CollArray *getChildrenColl(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) ;

unsigned int getChildrenCount(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

const eyedb::CollArray *getChildrenColl(eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

const Person *retrieveChildrenAt(unsigned int ind, eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const;

Person *retrieveChildrenAt(unsigned int ind, eyedb::Bool *isnull = 0,

eyedb::Status *status = 0);

eyedb::Oid retrievedChildrenOidAt(unsigned int ind, eyedb::Status *status = 0) const;

Only the last three method templates differ from the corresponding Car method templates:

1. const Person *retrievedChildrenAt(unsigned int ind, eyedb::Bool *isnull = 0,

eyedb::Status *status = 0) const;

Person *retrievedChildrenAt(unsigned int ind, eyedb::Bool *isnull = 0,

eyedb::Status *status = 0);

returns the #ind element in the collection. As this collection is ordered, the index of the element to get is fully
pertinent.

2. eyedb::Oid retrievedChildrenOidAt(unsigned int ind, eyedb::Status *status = 0) const;

returns the #ind oid in the collection. As this collection is ordered, the index of the element to get is fully pertinent.

Array Modifier

When an array modifier is present for an attribute, all the previous selector methods change in the same way: for each
dimension in the array, an index argument is added at the begining of the selector method.
For instance, for an attribute int x[23][12], the selector methods becomes:

eyedb::_int32 getX(unsigned int a0, unsigned int a1,

eyedb::Bool *isnull = 0, eyedb::Status *status = 0) const;

A call to getX(1, 3) returns the attribute value x[1][3].
If the left dimension is variable, for instance int x[][12], the following extra method is generated:

unsigned int getXCount(eyedb::Status * = 0) const;

For instance, for the other addrs literal user type attribute, the following code is generated:

Address *getOtherAddrs(unsigned int a0, eyedb::Bool *isnull = 0, eyedb::Status * = 0) ;

const Address *getOtherAddrs(unsigned int a0, eyedb::Bool *isnull = 0,

eyedb::Status * = 0) const;

unsigned int getOtherAddrsCount(eyedb::Status * = 0) const;

2.6 Modidier Methods

The modifier methods are very similar to the selector methods. Their forms and their number depends on the same
attribute type characteristics as the modifier methods.

Literal Basic or User Enum Type

The modifier method is under the form:

eyedb::Status set<attribute name>(<attribute primitive type>);

for instance for the age attribute:

eyedb::Status setAge(eyedb::_int32);

24 CONTENTS

Literal String

The modifier methods are under the form:

eyedb::Status set<attribute name>(const char *);

eyedb::Status set<attribute name>(unsigned int a0, char);

for instance for the name attribute:

eyedb::Status setName(const char *);

eyedb::Status setName(unsigned int a0, char);

Literal User Type

The modifier methods are under the form:

eyedb::Status set<attribute name>(<attribute primitive type>*);

for instance for the addr attribute:

eyedb::Status setAddr(Address*);

Object Basic, User or System Type

The modifier methods are under the form:

eyedb::Status set<attribute name>(<attribute primitive type>*);

eyedb::Status set<attribute name>Oid(const eyedb::Oid &);

for instance for the spouse attribute:

eyedb::Status setSpouse(Person*);

eyedb::Status setSpouseOid(const eyedb::Oid &);

Object Collection Type

For unordered collection types, the modifier methods are under the form:

eyedb::Status set<attribute name>Coll(<collection type>*);

eyedb::Status set<attribute name>Oid(const eyedb::Oid &);

eyedb::Status addTo<attribute name>Coll(<collection object type>*,

unsigned int magorder = 0);

eyedb::Status rmvFrom<attribute name>Coll(<collection object type>*);

eyedb::Status addTo<attribute name>Coll(const eyedb::Oid &,

unsigned int magorder = 0);

eyedb::Status rmvFrom<attribute name>Coll(const eyedb::Oid &);

where <collection type> can be:

1. eyedb::CollSet for a collection set

2. eyedb::CollBag for a collection bag

and where <collection object type> is the type which composing the collection.

Note that if the collection is not a literal but an object, the following extra method setting the collection oid is gen-
erated:

eyedb::Status set<attribute name>Oid(const eyedb::Oid &);

For the cars attribute, the following code is generated:

eyedb::Status setCarsColl(eyedb::CollSet*);

eyedb::Status addToCarsColl(Car*, unsigned int magorder = 0);

eyedb::Status addToCarsColl(const eyedb::Oid &, unsigned int magorder = 0);

eyedb::Status rmvFromCarsColl(Car*);

eyedb::Status rmvFromCarsColl(const eyedb::Oid &);

Let have a look to each method:

2. THE SCHEMA-ORIENTED GENERATED C++ API 25

1. eyedb::Status setCarsColl(eyedb::CollSet *coll);

sets the cars attribute collection to the input argument coll.

2. eyedb::Status addToCarsColl(Car *car, unsigned int magorder = 0);

adds the car instance to the collection attribute cars. If the collection is not yet created, this method call will
create one using the magorder argument for its magnitude order value.

3. eyedb::Status addToCarsColl(const eyedb::Oid &car_oid, unsigned int magorder = 0);

adds the instance of Car whose oid is car oid to the collection attribute cars. If the collection is not yet created,
this method call will create one using the magorder argument for its magnitude order value.

4. eyedb::Status rmvFromCarsColl(Car *car);

removes the car instance from the collection attribute cars. If the instance is not found, an error is raised.

5. eyedb::Status rmvFromCarsColl(const eyedb::Oid &car_oid);

removes the instance of Car whose oid is car oid from the collection attribute cars. If the instance is not found,
an error is raised.

For ordered collection types, the modifier methods are under the form:

eyedb::Status set<attribute name>Coll(<collection type>*);

eyedb::Status set<attribute name>Oid(const eyedb::Oid &);

eyedb::Status setIn<attribute name>CollAt(int where, <collection object type>*,

unsigned int magorder = 0);

eyedb::Status setIn<attribute name>CollAt(int where, const eyedb::Oid &,

unsigned int magorder = 0);

eyedb::Status unsetIn<attribute name>CollAt(int where);

where <collection type> can be:

1. eyedb::CollArray for a collection array

2. eyedb::CollList for a collection list
Note that the collection list are currently not implemented in EyeDB .

and where <collection object type> is the type which composing the collection.

Note that if the collection is not a literal but an object, the following extra method setting the collection oid is gen-
erated:

eyedb::Status set<attribute name>Oid(const eyedb::Oid &);

For the children attribute, the following code is generated:

eyedb::Status setChildrenColl(eyedb::CollArray*);

eyedb::Status setChildrenOid(const eyedb::Oid &);

eyedb::Status setInChildrenCollAt(int where, Person*, unsigned int magorder = 0);

eyedb::Status unsetInChildrenCollAt(int where);

eyedb::Status setInChildrenCollAt(int where, const eyedb::Oid &,

unsigned int magorder = 0);

Let have a look to each method:

1. eyedb::Status setChildrenColl(eyedb::CollSet *coll);

sets the children attribute collection to the input argument coll.

2. eyedb::Status setInChildrenCollAt(int where, Person *person,

unsigned int magorder = 0);

adds the person instance to the collection attribute children at position where. If the collection is not yet created,
this method call will create one using the magorder argument for its magnitude order value.

3. eyedb::Status setInChildrenCollAt(int where, const eyedb::Oid &person_oid,

unsigned int magorder = 0);

adds the instance of Person whose oid is person oid to the collection attribute children at position where.. If the
collection is not yet created, this method call will create one using the magorder argument for its magnitude order
value.

4. eyedb::Status unsetInChildrenCollAt(int where);

removes the instance found at position where from the collection attribute children.

26 CONTENTS

Array Modifier

When an array modifier is present for an attribute, all the previous modifier methods change in the same way: for each
dimension in the array, an index argument is added at the begining of the selector method.
For instance, for an attribute int x[32][64], the modifier methods becomes:

eyedb::Status setX(unsigned int a0, unsigned int a1, eyedb::_int32);

A call to setX(2, 24) sets the attribute value x[2][24].

For instance, for the other addrs literal user type attribute, the following code is generated:

eyedb::Status setOtherAddrs(unsigned int a0, Address *);

eyedb::Status setOtherAddrsCount(unsigned int count);

Methods mapped from ODL methods

For each ODL class method, there is a generated C++ method with the same name and the corresponding type.
The generated methods in our example is as follows:

virtual eyedb::Status change_address(const char * street, const char * town,

char * &oldstreet, char * &oldtown,

eyedb::_int32 &retarg);

static eyedb::Status getPersonCount(eyedb::Database *db, eyedb::_int32 &retarg);

2.7 Initialization

The minimal EyeDB C++ program using a generated schema-oriented API is as follows (using our example):

#include "person.h"

int

main(int argc, char *argv[])

{

eyedb::init(argc, argv);

person::init();

// ...

person::release();

eyedb::release();

return 0;

}

A few remarks about this code:

1. the file person.h contains the whole generated C++ API and includes the generic EyeDB API.

2. the EyeDB C++ layer must be initialized using one of the static method init method of the class EyeDB.

3. the generated C++ layer must be initialized using the static method init of the class package.

4. the last statements person::release() and eyedb::release() allow you to release all the allocated resources and
to close opened databases and connections.
Note that this statement is optionnal as all allocated resources, opened databases and connections will be automat-
ically released or closed in the exit() function.

2.8 Database Opening

As shown in a previous section, it is recommended to use the generated C++ database class to open a database with the
template schema.
For instance:

eyedb::Connection conn;

conn.open();

const char *dbname = argv[1];

person::Database db(dbname);

db.open(&conn, eyedb::Database::DBRW);

3. EXAMPLES 27

3 Examples

This section introduces a few complete simple examples that can be found in the directory prefix/share/doc/eyedb/examples.
The README file describes the way to compile and run these examples.
The first two programs listed here introduce the generic C++ API of EyeDB while the two following programs presents
the generated schema-oriented C++ API through the simple schema example introduced in this chapter. The last example
shows EYEDBDBM instance manipulation.

3.1 Generic Query Example

This example introduces a simple query program which takes two arguments: the database name and an OQL construct.
It executes the OQL construct and displays on its standard output the returned atoms.

// examples/C++Binding/generic/query/query.cc

#include <eyedb/eyedb.h>

using namespace std;

int

main(int argc, char *argv[])

{

eyedb::init(argc, argv);

if (argc != 3) {

fprintf(stderr, "usage: %s <dbname> <query>\n", argv[0]);

return 1;

}

eyedb::Exception::setMode(eyedb::Exception::ExceptionMode);

try {

eyedb::Connection conn;

// connecting to the eyedb server

conn.open();

eyedb::Database db(argv[1]);

// opening database argv[1]

db.open(&conn, eyedb::Database::DBRW);

// beginning a transaction

db.transactionBegin();

// performing the OQL query argv[2] using the eyedb::OQL interface

eyedb::OQL q(&db, argv[2]);

eyedb::ValueArray arr;

q.execute(arr);

cout << "###### Performing the OQL query " << argv[2] <<

" using the eyedb::OQL interface" << endl;

// for each value returned in the query, display it:

for (int i = 0; i < arr.getCount(); i++) {

// in case of the returned value is an oid, load it first:

if (arr[i].type == eyedb::Value::OID) {

eyedb::Object *o;

db.loadObject(arr[i].oid, &o);

cout << o;

o->release();

}

else

cout << arr[i] << endl;

28 CONTENTS

}

// performing the same query using eyedb::OQLIterator interface

// [1]: getting all returned values

cout << "\n###### Performing the same query using eyedb::OQLIterator "

"interface: getting all returned values" << endl;

eyedb::OQLIterator iter(&db, argv[2]);

eyedb::Value val;

while (iter.next(val)) {

// in case of the returned value is an oid, load it first:

if (val.getType() == eyedb::Value::OID) {

eyedb::Object *o;

db.loadObject(val.oid, &o);

cout << o;

// in case of the returned object is a collection, display its

// contents

if (o->asCollection()) {

eyedb::CollectionIterator citer(o->asCollection());

cout << "contents BEGIN\n";

eyedb::Object *co;

while(citer.next(co)) {

cout << co;

co->release();

}

cout << "contents END\n\n";

}

// in case of the returned object is a class, display its

// extent

else if (o->asClass()) {

eyedb::ClassIterator citer(o->asClass());

cout << "extent BEGIN\n";

eyedb::Object *co;

while(citer.next(co)) {

cout << co;

co->release();

}

cout << "extent END\n\n";

}

o->release();

}

else

cout << val << endl;

}

// [2]: getting only returned objects

cout << "\n###### Performing the same query using eyedb::OQLIterator "

"interface: getting only returned objects" << endl;

eyedb::OQLIterator iter2(&db, argv[2]);

eyedb::Object *o;

while (iter2.next(o)) {

cout << o;

o->release();

}

// committing the transaction

3. EXAMPLES 29

db.transactionCommit();

}

catch(eyedb::Exception &e) {

cerr << argv[0] << ": " << e;

eyedb::release();

return 1;

}

eyedb::release();

return 0;

}

For instance:

./query person "select Person"

./query EYEDBDBM "select class"

3.2 Generic Storing Example

This example introduces a simple store program which takes three arguments: the database name, a person name and a
person age. It creates a new instance of person using the given name and age.

// examples/C++Binding/generic/store/store.cc

#include <eyedb/eyedb.h>

using namespace std;

int

main(int argc, char *argv[])

{

eyedb::init(argc, argv);

if (argc != 4) {

fprintf(stderr, "usage: %s <dbname> <person_name> <person_age>\n",

argv[0]);

return 1;

}

eyedb::Exception::setMode(eyedb::Exception::ExceptionMode);

try {

eyedb::Connection conn;

// connecting to the eyedb server

conn.open();

eyedb::Database db(argv[1]);

// opening database argv[1]

db.open(&conn, eyedb::Database::DBRW);

// beginning a transaction

db.transactionBegin();

// looking for class ’Person’

eyedb::Class *personClass = db.getSchema()->getClass("Person");

// looking for the attribute ’name’ and ’age’ in the class ’Person’

const eyedb::Attribute *name_attr = personClass->getAttribute("name");

if (!name_attr) {

fprintf(stderr, "cannot find name attribute in database\n");

return 1;

}

30 CONTENTS

const eyedb::Attribute *age_attr = personClass->getAttribute("age");

if (!age_attr) {

fprintf(stderr, "cannot find age attribute in database\n");

return 1;

}

// instanciating a ’Person’ object

eyedb::Object *p = personClass->newObj(&db);

// setting the name argv[2] to the new Person instance

name_attr->setSize(p, strlen(argv[2])+1);

name_attr->setValue(p, (eyedb::Data)argv[2], strlen(argv[2])+1, 0);

// setting the age argv[3] to the new Person instance

int age = atoi(argv[3]);

age_attr->setValue(p, (eyedb::Data)&age, 1, 0);

p->store();

// committing the transaction

db.transactionCommit();

}

catch(eyedb::Exception &e) {

cerr << e;

eyedb::release();

return 1;

}

eyedb::release();

return 0;

}

For instance:

./store person john 32

./store person mary 28

3.3 Schema-Oriented Query Example

This example introduces a simple schema-oriented query program which takes two arguments: the database name and an
OQL construct. It executes the OQL construct and displays on its standard output the returned atoms.

// examples/C++Binding/schema-oriented/query/query.cc

#include "person.h"

using namespace std;

int

main(int argc, char *argv[])

{

eyedb::init(argc, argv);

person::init();

if (argc != 3) {

fprintf(stderr, "usage: %s <dbname> <query>\n", argv[0]);

return 1;

}

eyedb::Exception::setMode(eyedb::Exception::ExceptionMode);

try {

3. EXAMPLES 31

eyedb::Connection conn;

// connecting to the eyedb server

conn.open();

// opening database argv[1] using ’personDatabase’ class

personDatabase db(argv[1]);

db.open(&conn, eyedb::Database::DBRW);

// beginning a transaction

db.transactionBegin();

// performing the OQL query argv[2]

eyedb::OQL q(&db, argv[2]);

eyedb::ObjectArray arr;

q.execute(arr);

// for each Person returned in the query, display its name and age,

// its address, its spouse name and age and its cars

for (int i = 0; i < arr.getCount(); i++) {

Person *p = Person_c(arr[i]);

if (p) {

cout << "name: " << p->getName() << endl;

cout << "age: " << p->getAge() << endl;

if (p->getAddr()->getStreet().size())

cout << "street: " << p->getAddr()->getStreet() << endl;

if (p->getAddr()->getTown().size())

cout << "town: " << p->getAddr()->getTown() << endl;

if (p->getSpouse()) {

cout << "spouse_name: " << p->getSpouse()->getName() << endl;

cout << "spouse_age: " << p->getSpouse()->getAge() << endl;

}

eyedb::CollectionIterator iter(p->getCarsColl());

Car *car;

while (iter.next((eyedb::Object *&)car)) {

cout << "car: #" << i << ": " <<

car->getBrand() << ";" <<

car->getNum() << endl;

}

}

}

// committing the transaction

db.transactionCommit();

}

catch(eyedb::Exception &e) {

cerr << argv[0] << ": " << e;

eyedb::release();

return 1;

}

eyedb::release();

return 0;

}

For instance:

./query person "select Person"

32 CONTENTS

3.4 Schema-Oriented Storing Example

This example introduces a simple schema-oriented store program which takes four arguments: the database name, a person
name, a person age and the name of its spouse. It creates a new instance of person using the given name and age and
mary this person to the spouse whose name is given.

// examples/C++Binding/schema-oriented/store/store.cc

#include "person.h"

int

main(int argc, char *argv[])

{

// initializing the EyeDB layer

eyedb::init(argc, argv);

// initializing the person package

person::init();

if (argc != 5) {

fprintf(stderr, "usage: %s <dbname> <person name> <person age> "

"<spouse name>\n", argv[0]);

return 1;

}

const char *dbname = argv[1];

const char *name = argv[2];

int age = atoi(argv[3]);

const char *spouse_name = argv[4];

eyedb::Exception::setMode(eyedb::Exception::ExceptionMode);

try {

eyedb::Connection conn;

// connecting to the EyeDB server

conn.open();

// opening database dbname using ’personDatabase’ class

personDatabase db(dbname);

db.open(&conn, eyedb::Database::DBRW);

// beginning a transaction

db.transactionBegin();

// first looking for spouse

eyedb::OQL q(&db, "select Person.name = \"%s\"", spouse_name);

eyedb::ObjectArray arr;

q.execute(arr);

// if not found, returns an error

if (!arr.getCount()) {

fprintf(stderr, "cannot find spouse ’%s’\n", spouse_name);

return 1;

}

// (safe!) casting returned object

Person *spouse = Person_c(arr[0]);

// creating a Person

Person *p = new Person(&db);

p->setCstate(Sir);

3. EXAMPLES 33

p->setName(name);

p->setAge(age);

p->setSpouse(spouse);

// spouse is no more necessary: releasing it

spouse->release();

p->getAddr()->setStreet("voltaire");

p->getAddr()->setTown("paris");

// creating two cars

Car *car1 = new Car(&db);

car1->setBrand("renault");

car1->setNum(18374);

Car *car2 = new Car(&db);

car2->setBrand("ford");

car2->setNum(233491);

// adding the cars to the created person

p->addToCarsColl(car1);

p->addToCarsColl(car2);

// car pointers are no more necessary: releasing them

car1->release();

car2->release();

// creating ten children

for (int i = 0; i < 10; i++) {

Person *c = new Person(&db);

char tmp[64];

c->setAge(i);

sprintf(tmp, "%d", i);

c->setName((std::string(name) + std::string("_") + std::string(tmp)).c_str());

p->setInChildrenCollAt(i, c);

c->release();

}

// storing all in database

p->store(eyedb::RecMode::FullRecurs);

// committing the transaction

db.transactionCommit();

// releasing p

p->release();

}

catch(eyedb::Exception &e) {

std::cerr << argv[0] << ": " << e;

eyedb::release();

return 1;

}

// releasing the EyeDB layer: this is not mandatory

eyedb::release();

return 0;

}

./store person wayne 34

./store person poppins 51

34 CONTENTS

3.5 Simple Administration Example

This simple example introduces the way to manipulate objects in the EYEDBDBM database. This program:

1. displays the schema of the EYEDBDBM database,

2. displays the EyeDB user names,

3. for each database, it displays the name, the database file and the user access information.

// examples/C++Binding/schema-oriented/admin/admin.cc

#include <eyedb/eyedb.h>

using namespace std;

static const char *

get_string_mode(eyedb::DBAccessMode mode)

{

if (mode == eyedb::NoDBAccessMode)

return "eyedb::NoDBAccessMode";

if (mode == eyedb::ReadDBAccessMode)

return "eyedb::ReadDBAccessMode";

if (mode == eyedb::WriteDBAccessMode)

return "eyedb::WriteDBAccessMode";

if (mode == eyedb::ExecDBAccessMode)

return "eyedb::ExecDBAccessMode";

if (mode == eyedb::ReadWriteDBAccessMode)

return "eyedb::ReadWriteDBAccessMode";

if (mode == eyedb::ReadExecDBAccessMode)

return "eyedb::ReadExecDBAccessMode";

if (mode == eyedb::ReadWriteExecDBAccessMode)

return "eyedb::ReadWriteExecDBAccessMode";

if (mode == eyedb::AdminDBAccessMode)

return "eyedb::AdminDBAccessMode";

return NULL;

}

int

main(int argc, char *argv[])

{

// initializing the eyedb layer

eyedb::init(argc, argv);

eyedb::Exception::setMode(eyedb::Exception::ExceptionMode);

try {

eyedb::Connection conn;

// connecting to the eyedb server

conn.open();

// opening the database EYEDBDBM using ’dbmDataBase’ class

eyedb::DBMDatabase db("EYEDBDBM");

db.open(&conn, eyedb::Database::DBRead);

// beginning a transaction

db.transactionBegin();

// display the scheme on stdout

cout << db.getSchema() << endl;

// looking for all user

eyedb::OQL q_user(&db, "select User");

3. EXAMPLES 35

eyedb::ObjectArray user_arr;

q_user.execute(user_arr);

cout << "User List {" << endl;

for (int i = 0; i < user_arr.getCount(); i++) {

eyedb::UserEntry *user = (eyedb::UserEntry *)user_arr[i];

cout << "\t" << user->name() << endl;

}

cout << "}\n" << endl;

// looking for all database entry

eyedb::OQL q_db(&db, "select eyedb::DBEntry");

eyedb::ObjectArray db_arr;

q_db.execute(db_arr);

cout << "Database List {" << endl;

for (int i = 0; i < db_arr.getCount(); i++) {

eyedb::DBEntry *dbentry = (eyedb::DBEntry *)db_arr[i];

cout << "\t" << dbentry->dbname() << " -> " << dbentry->dbfile() << endl;

// looking for all user which has any permission on this

// database

eyedb::OQL q_useraccess(&db,

"select eyedb::DBUserAccess->dbentry->dbname = \"%s\"",

dbentry->dbname().c_str());

eyedb::ObjectArray useraccess_arr;

q_useraccess.execute(useraccess_arr);

if (useraccess_arr.getCount()) {

cout << "\tUser Access {" << endl;

for (int j = 0; j < useraccess_arr.getCount(); j++) {

eyedb::DBUserAccess *ua = (eyedb::DBUserAccess *)useraccess_arr[j];

cout << "\t\t" << ua->user()->name() << " -> " <<

get_string_mode(ua->mode()) << endl;

}

cout << "\t}" << endl;

}

cout << endl;

useraccess_arr.garbage();

}

cout << "}" << endl;

// releasing runtime pointers

db_arr.garbage();

user_arr.garbage();

}

catch(eyedb::Exception &e) {

cerr << argv[0] << ": " << e;

eyedb::release();

return 1;

}

// releasing the eyedb layer: this is not mandatory

eyedb::release();

return 0;

}

