
Distributing CORBA Views From an OODBMS

Eric Viara
SYSRA

523, place des Terrasses
91000 EVRY, France.
Eric.Viara@sysra.com

Guy Vaysseix
CRI INFOBIOGEN

523, place des Terrasses
91000 EVRY, France

Guy.Vaysseix@infobiogen.fr

Emmanuel Barillot
GENOPLANTE

523, place des Terrasses
91000 EVRY, France

Emmanuel.Barillot@infobiogen.fr

Abstract

The need to distribute objects on the Internet and to offer
views from databases has found a solution with the advent
of CORBA. Most database management systems now offer
CORBA interfaces which are generally simple mapping of
the database schema to the CORBA world. This approach
does not address all the problem of database interoperation
because (i) such a view is static (ii) its semantic is com-
pletely bound to the semantic of the schema and it is not pos-
sible to re-model it (iii) only one view per database can be
offered (iv) access may be limited to reading and no mech-
anism is given to write in the database through the view.
To solve these problems, we have designed a language, the
Interface Mapping Definition Language (IMDL) and some
tools, grouped in the Interface Mapping Service (IMS).
IMDL is used to define CORBA views from OODBMS, while
IMS generates an IDL construct and a full CORBA imple-
mentation from an IMDL construct and a database schema.

1. Introduction

The problem of data interoperation remains one of the
greatest challenge in the domain of database science. To
tackle this issue, the Object Management Group [17] pro-
motes the Common Object Request Broker Architecture
(CORBA) [9, 15, 17, 18, 20, 23] for several years. CORBA
specifies a common language and protocol for the de-
scription and distribution of objects: the Interface Defini-
tion Language (IDL) and the Internet Inter-ORB Protocol
(IIOP). They allow for a language and platform indepen-
dence of servers and clients. Besides, CORBA offers a great
variety of services such as Naming or Trading. For all these
reasons, CORBA has been successfully adopted in several
domains as different as banking, electronic commerce, sci-
entific research and transportation.

Most database management systems (DBMS) now pro-

vide a CORBA interface. This interface allows the ma-
nipulation of objects (or rows) from a database through an
ORB layer. Generally, the interface is schema oriented in
the sense that the IDL interface is a direct mapping of the
database schema. Each class (or table) is mapped on a
CORBA interface in a one-to-one mapping: each class at-
tribute is mapped to an interface attribute and each class
method is mapped to an interface method.

This approach enables a standardized distribution of ob-
jects but does not address all the requirements of database
interoperation. For example, it may be preferable not to ex-
port some parts of the schema (some classes, attributes, or
methods) which have only an internal purpose. When deal-
ing with biological information, the domain whose database
interoperation needs drove our developments, it is often
necessary to offer several views from one database, sim-
ply because Biology is not yet a unified science but presents
many facets : for example a physician, a molecular biologist
and a geneticist would not be interested in the same aspect
of the information known on a given gene. Also there are
a myriad of databases storing data on the same knowledge
domain but with a different perspective, which means that
the database schemas present a semantic gap that has to be
bridged. To address this issue, the different data providers
may wish to use a common interface definition, or a stan-
dard interface may preexist that will enforce the database
manager to map a database schema to a given target IDL.
All these points are not addressed by a one-to-one mapping
of the database schema to an IDL.

To solve these problems, we have designed a language,
Interface Mapping Definition Language (IMDL) and tools,
grouped in the Interface Mapping Service (IMS), to define
and produce CORBA views from an OODBMS [2, 26, 14]
in an automated and flexible way.

The current work has been designed to be as generic as
possible: ideally, the IMDL language and IMS should not
depend neither on the OODBMS nor on the ORB used. This
is true for IMDL: the IMDL language is quite independent
from the OODBMS and the ORB used. However, the In-



terface Mapping Services (IMS), whose main purpose is to
generate the CORBA bridge for the given OODBMS and
ORB, both depend on the OODBMS and the ORB used.

Because ORBs follow the CORBA standard, there is a
large common denominator to all the ORB implementa-
tions: the differences appear essentially in the form of the
provided API and the quantity of services provided. IMS
has been designed so that only a couple of days is necessary
to port IMS from one ORB to another.

The diversification in the set of the OODBMS is larger:
although ODMG specifies and promotes a standard for
OODBMS (see 2.2), only a few OODBMS are ODMG
compliant and very few of them implement strictly the C++
language binding. IMS can be adapted to any OODBMS
that supports at least single inheritance and provides a query
language, but the adaptation time is far more important than
for an ORB adaptation.

The EYEDB OODBMS has been choosen to realize
the first implementation of the Interface Mapping Services
for two main reasons: the first one is that EYEDB is
closely based on the ODMG concepts and so, it makes fu-
ture ODMG-based OODBMS adaptation easier; the second
more pragmagtic reason is that the designers of IMDL and
IMS are the designers of the EYEDB OODBMS.

The actors of the problem of distributing CORBA views
are presented in section 2, while those intervening in the
solution (IMDL and IMS) are described section 3. Section
4 exposes the details of use of IMDL and IMS through a
basic example and section 5 discusses about related work
and approaches.

2. CORBA view distribution: Actors of the
problem

2.1. CORBA

CORBA specifications have been designed by the Ob-
ject Management Group (OMG) at the beginning of the ’90.
These specifications mainly include:

1. architecture specification: the OMG Object Manage-
ment Architecture (OMA). The major components of
this architecture are the clients, the servers and the Ob-
ject Request Broker (ORB) which is the inescapable
mediator between clients and servers.

2. interface specification: services provided by servers
to clients are described in a platform independent in-
terface language named Interface Definition Language
(IDL),

3. protocol specification: object are distributed accross
the network using a standard protocol named Internet
Inter-ORB Protocol (IIOP).

4. standard services: a great variety of standard services
gathered in a set called CORBAservices are specified:
Lifecycle, Relationship, Persistent Object, External-
ization, Naming, Trading, Event, Transaction, Con-
currency, Property, Query, Security and Licensing Ser-
vices.

CORBA specifications are currently implemented by many
ORB products: Orbix , Orbacus , VisiBroker , HP
ORB Plus , SUN Neo and so on. All this products imple-
ments the OMA, the IDL and the IIOP protocol but, gen-
erally, do not implement currently all the standard services
gathered in the CORBAservices.

2.2. Object Oriented Database Management Sys-
tems

The domain of the Object Oriented Database Manage-
ment Systems (OODBMS) is large and diversified; the
OODBMS concept includes several meanings. However,
all the OODBMS have a number of common points:

1. they provide an object model which allows for the def-
inition of complex data:

(a) single or multiple inheritance is provided,

(b) classes include both attributes and methods,

(c) class attributes can take the form of literal types,
arrays, collections or object references.

(d) one-to-one, one-to-many and many-to-many re-
lationships are often supported.

2. each database object is identified in a unique way by
an Object IDentifier (OID),

3. integration with at least one programming language:
C++, Smalltalk, Java,

4. a query language adapted to the object model.

Because of the great diversity of the OODBMS, the Object
Data Management Group (ODMG) [11] has been created
in the early 1990 whose aim is to specify and promote a
standard for the OODBMS. ODMG gathers the main actors
of the OODBMS. ODMG standard (currently version 2.0)
specifies mainly the following points:

1. an object model,

2. an object definition language (ODL),

3. an object query language (OQL),

4. C++, Java and Smalltalk language bindings.



ODMG specifies several level of compliance: object model
compliance, ODL compliance, OQL compliance, C++
binding compliance and so on.
Several product databases are currently partially compli-
ant with the ODMG standard: O2[2], ObjectStore [10],
POET [24], VERSANT [12], ONTOS [4], Objectivity [16],
EYEDB [30] and so on.

2.3. The EYEDB OODBMS

The EYEDB OODBMS [30] is an OODBMS based on
the ODMG concepts. It is currently used in several projects
related to genetics and molecular biology and undergoes
testing in several locations, including industrial companies.
Online information and a trial version of EYEDB can be
obtained from http://www.eyedb.com.

The key features of the EYEDB OODBMS are

• standard OODBMS features [2, 26, 14]: persistent
typed data management; client/server model; trans-
actional services; recovery system; expressive object
model; inheritance; integrity constraints; methods;
triggers; query language; application programming in-
terfaces,

• language orientation: a definition language based on
the ODMG [11] Object Definition Language (ODL);
a query language based on the ODMG Object Query
Language (OQL); C++ and Java bindings; PHP and
PERL bindings,

• genericity and orthogonality of the object model:
inspired by the SmallTalk, LOOPS, Java and ObjVlisp
object models (i.e. every class derives from the class
object and can be manipulated as an object); type
polymorphism; binary relationships; literal and ob-
ject types; transient and persistent objects; method and
trigger overloading; template-based collections (set,
bag and array); multi-dimensional and variable size di-
mensional arrays,

• support for data distribution: CORBA binding;
multi-database objects,

• support for large databases: databases up to several
Tb (terabytes),

• efficiency: database objects are directly mapped
within the virtual memory space; object memory
copies are reduced to the minimum; clever caching
policies are implemented,

• scalability: programs are able to deal with hundred of
millions of objects without loss of performance.

2.4. Distributing CORBA Views from an OODBMS

2.4.1 What is a CORBA View?

A database CORBA view (named CORBA view for
shortcut) allows the user to manipulate database objects
through an ORB. A CORBA view is mainly composed of
an interface definition (using the IDL language) and an
implementation of this IDL dealing with an OODBMS.
We call this a view by analogy to the well known relational
database management systems (RDBMS) view concept,
but there are some conceptual differences between an
RDBMS and a CORBA view.
An RDBMS view is a table-oriented exportation of the
RDBMS content through an SQL statement: a relational
view denotes a set of rows on which queries can be
performed.
A CORBA view is essentially an instance-oriented interface
to the DBMS: objets are built on the fly by the CORBA
server and one cannot restrict the extension of a class,
every instance in the DBMS from a mapped class will
be accessible through the interface. Differently said, the
production rules are separated from the view and reside
in factories, where the filtering is done if needed. As a
consequence, no query is possible in CORBA views.

The main other differences between are:

1. the CORBA view allows for the distribution of
database objects,

2. the CORBA view allows for the manipulation of object
in different databases with different schemas,

3. the CORBA view allows read and write access to the
database objects,

4. the CORBA view does not depend on the DBMS used,

5. the creation of a CORBA view is done outside the
DBMS.

To define and distribute CORBA views from an OODBMS,
we provide two approaches whose spirit differ fundamen-
tally. The first approach is driven by the OODBMS source
schema, while the second is driven by the target CORBA
view defined in IDL. The first approach is named source
schema driven and the second one is named target view
driven.

2.4.2 Source Schema driven CORBA views

From a database schema, one defines, using the IMDL lan-
guage, hints about the view to be built, for example:

• class, attribute or method visibility restrictions,



• class, attribute or method renaming,

• interface attribute or method mapping to an OQL con-
struct,

• interface attribute or method mapping to a C++ con-
struct,

• addition of attributes or methods in a target interface.

In this case, as shown in Figure 1, the starting point is:

1. a database schema,

2. hints about the view to be built expressed as an IMDL
construct.

the result is:

1. a generated IDL,

2. a full or partial CORBA implementation.

2.4.3 Target View driven CORBA views

In this case, the target view is given a priori in IDL. From a
database schema, one defines, using IMDL, the way to map
the target IDL from the source schema.

In this second case, as shown in Figure 2, the starting
point is:

• a database schema,

• an IDL,

• hints about the way to map the target view from the
input schema expressed as an IMDL construct.

the result is:

• a full or partial CORBA implementation of the IDL.

The mapping hints are expressed using IMDL and the
CORBA view is generated using IMS services.

3. CORBA view distribution: Actors of the so-
lution

3.1. The Interface Mapping Definition Language
(IMDL)

IMDL is a strict superset of the OMG IDL [17, 18]. A
few constructs have been added to specify the mapping from
the database schema to the IDL view. These constructs al-
low the user to give the following directives to IMS com-
piler:

1. to hide database classes, database class attributes or
methods in the target CORBA view,

2. to rename database classes, database class attributes or
method in the target CORBA view,

3. to extend database classes in the CORBA view by
adding new attributes or methods in the target CORBA
view,

4. to map an IDL interface attribute from a specific
database class attribute,

5. to map an IDL interface attribute from an Object Query
Language (OQL) construct,

6. to map an IDL interface attribute from a C++ expres-
sion or C++ code.

7. to map an IDL interface method from a database
method,

8. to map an IDL interface method from an OQL con-
struct,

9. to map an IDL interface method from a C++ expres-
sion or C++ code.

Note that IMDL does not depend on the OODBMS nor
on ORB used: as soon as the OODBMS provides a data
description language and a query language, IMDL can be
used.

3.2. The Interface Mapping Services (IMS)

The main actor of IMS is the IMS compiler which gen-
erates an IDL and a full or partial CORBA implementation
for a given ORB from a database schema and an IMDL con-
struct (Figure 1) or which generates a full or partial CORBA
implementation from a target IDL, a database schema and
an IMDL construct (Figure 2). The IMS compiler may gen-
erate also a standard interface factory to build instances of
any generated interface.
The IDL generated with IMS does not depend on the
OODBMS nor on the ORB used; but the generated C++
code depends on both the OODBMS and the ORB. IMS
has been implemented for the Orbix and Orbacus ORBs
and for the EYEDB [27, 30] OODBMS.

3.3. CORBA View Runtime Architecture

The main actors of the runtime architecture of a CORBA
view are (Figure 3):

1. the clients of the CORBA view using the services de-
fined in the IDL,



CORBA

IMDL

IDL

Schema
Database

Implementation

Interface Mapping Services (IMS)

Figure 1. Principles of a source schema driven CORBA view

CORBA

Database
Schema

Implementation

IDL
Target IMDL

Interface Mapping Services (IMS)

Figure 2. Principles of a target IDL driven CORBA view

2. the Object Request Broker,

3. the server implementing the CORBA IDL; the clients
dialog with this server through the ORB layer; this
server is a client of the OODBMS server,

4. the OODBMS server.

Clients manipulate CORBA objects while the server ma-
nipulates both CORBA and OODBMS objects. More pre-
cisely, there are three kind of objects: (Figure 3):

1. The CORBA objects, instances of the IDL interfaces:
for each client CORBA object, there is one corba
object in the server side which is the implementa-
tion of the client corba object . Those objects are
denoted as client and server corba object s.

2. The OODBMS runtime objects, instances of the ODL
classes, bound to the database objects. There is one

oodbms object in the server side for each oodbms
object in the client side. Those objects are denoted
as client and server oodbms object s.

3. The OODBMS database objects residing in a database.
Those objects are denoted as database object s.
Note that the oodbms object s and the database
object s are tightly linked together through the
OODBMS runtime layer.

A corba object cobj is said to be mapped from an
oodbms object iobj when:

1. at least one attribute selection or modification on cobj
refers to iobj or

2. at least one method invocation on cobj refers to iobj.



database
object

OODBMS Server

OODBMS Layer

oodbms object

CORBA Client 1

CORBA Client 2

corba object

corba object

CORBA Layer

CORBA Server

ORB
oodbms object

corba object

oodbms protocol

Figure 3. CORBA View Runtime Architecture

4. Designing a CORBA View from an
OODBMS

As presented previously, to design a CORBA view from
an OODBMS, one needs to define the mappings from the
database classes to the target CORBA interfaces using the
IDML language. The IMS compiler then generates the
CORBA implementation for a given ORB and OODBMS
from the IMDL construct.

To illustrate this paper and give more details on the
principles of IMS, let’s consider a simple schema that
is described here using the EYEDB Object Definition
Language (ODL) close to the ODMG ODL [11].

4.1. A Simple Schema

enum CivilState {
Lady = 0x10,
Sir = 0x20,
Miss = 0x40

};

class Address {
attribute string street;
attribute string<32> town;

};

class Person {
attribute string name;
attribute int age;
attribute Address addr;
attribute CivilState cstate;
relationship Person * spouse

inverse Person::spouse;
attribute set<Car *> * cars;
attribute Person *children[];

};

class Car {
attribute string brand;
attribute int num;

};

class Employee extends Person {
attribute long salary;

};

This ODL construct defines one enumerated type,
CivilState , and four classes, Address , Person , Car
and Employee . The class Adress is composed of a vari-
able size literal attribute, street , and one fixed size lit-
eral attribute town . As specified by the ODMG, a literal
attribute value has no identifier, while an object attribute
value has an identifier.
The class Person is composed of four literal attributes,
name , age , addr , and cstate , a relationship object at-
tribute, spouse , a collection object attribute, cars , and a
variable size object attribute array, children . Note that
as the spouse attribute is a relationship, the OODBMS
maintains its referential integrity. This means that if an ob-
ject that participates in a relationship is removed, then any
traversal path to that object is also removed.
As the object attributes cars and children are not re-
lationships, the OODBMS does not maintain their referen-
tial integrity. Such a unidirectionnal reference is called an
object-valued attribute.

4.2. Source Schema driven study

4.2.1 Creating a CORBA view with IMDL

From the previous database schema, we want to build a
CORBA view where several attributes are hidden, some oth-



ers are renamed and some methods are created; for example,
we want:

• to hide the following attributes:

– cstate and children in the class Person ,

– street in the class Address .

• to rename the following attributes:

– name in the class Person renamed as
lastname ,

– age in the class Person renamed as
how old is he

• to add an updatable attribute in the class Person
named spname mapped from the name of the
spouse of the calling instance of Person ,

• to add a readonly attribute in the class Person named
same age person list which gives the list of the
instances of Person which have the same age as the
calling instance of Person .

• to add a method in the class Employee named
is he rich() which returns true if the salary of
the instance of Employee is greater than a constant
amount.

• to add an updatable attribute in the class Employee
named euro salary mapped from the salary at-
tribute converted to the euro currency,

IMDL and IMS allow the user to implement such a CORBA
view in a quite automatic and simple way. The user only has
to define hints in IMDL and to invoke IMS compiler to gen-
erate both the target IDL and the CORBA implementation
of that IDL for Orbix or Orbacus .
Using IMDL, the description of the hints for the CORBA
view proposed above is as follows:

module People {

implicit *;

hide Person::cstate,
Person::children,
Address::street;

rename Person::name to Person::lastname;
rename Person::age to

Person::how_old_is_he;

typedef sequence<Person> PersonList;

extend Person {
map attribute spname
from spouse.name;

map readonly attribute
PersonList same_age_persons
from %oql{select x from Person x where

x.age = this.age; %};
};

extend Employee {
map boolean is_he_rich() from

expr("return salary() > 10000");
map attribute euro_salary from

// get C++ expression
expr("salary() / 6.55957")
: // token delimiter
// set C++ expression
expr("salary(euro_salary * 6.55957)");

};
};

Let’s explain each detail of the previous IMDL construct:

• this IMDL construct is composed of an IDL module,
named People , in which view hints are defined.

• the first statement within the module declaration is
implicit * . This statement means that all the
database schema types defined in the input ODL will
be mapped in an implicit way. An implicit mapping
for an ODL class is a one-to-one mapping:

– the ODL class has a corresponding generated
IDL interface with the same name,

– each of its attributes (resp. methods) has a corre-
sponding attribute (resp. method) within the gen-
erated IDL interface with the same name and the
corresponding type (resp. signature).

For example, the implicit mapping of the ODL class
Address is:

interface Address {
attribute string street;

// mapped from Address::street
attribute string town;

// mapped from Address::town
};

The directive implicit * ensures a one-to-one
mapping between each ODL class and each gener-
ated IDL interface. Nevertheless, the IMDL directives
hide , rename and extend may be used to alter this
implicit mapping.

• the hide directive allows the user to hide an ODL
class, an ODL class attribute or method: this means
that the pointed class, attribute or method will not
be present in the generated IDL. In our example,
three attributes are hidden in the generated IDL view:



Person::cstate . Person::children and
Address::street . This means that the previously
shown IDL interfaces becomes:

interface Address {
attribute string town;

};

interface Person {
attribute string name;
attribute long age;
attribute Address addr;
attribute Person spouse;
attribute CarList cars;
// ...

• the rename directive allows the user to rename an
ODL class, an ODL class attribute or method: this
means that the pointed class, attribute or method will
be renamed in the generated IDL. In our example, the
interface Person becomes:

interface Person {
attribute string lastname;

// mapped from Person::name
attribute long how_old_is_he;

// mapped from Person::age
...

• the extend directive allows the user to extend an
existing mapping by adding some attributes or meth-
ods to it. In our example, an attribute named
same age persons of type sequence of Person
is added to the interface Person and a method named
is he rich() is added to the interface Employee .

• the map from IMDL directive allows the user to map
an IDL attribute or method from one of the following
constructs:

1. an ODL attribute,

2. an OQL construct,

3. a C++ expression,

4. some C++ code.

This example introduces the first, the second and the
third mapping:

1. mapping from an attribute:

As we have seen previously, the attributes of the
Person IDL interface are mapped from attributes
of the ODL Person class thanks to the implicit
* and rename directives. These view attributes
are updatable as they are directly mapped to well
identified mono valued database attributes.

The attribute spname is also mapped from an at-
tribute, more exactly from an attribute path expression
(path expression for shortcut): spouse.name . A
path expression is a sequence of attribute names
separated by dots. It can also contain array modifiers
under the form [const int expr] . For instance,
the following path expression mapping construct is
valid:

map attribute long xage from
spouse.children[(2+3)>>1].spouse.age;

Note that an IDL attribute mapped from an ODL
path expression is always updatable unless it has the
readonly qualifier.

2. mapping from an OQL construct:

map readonly attribute
PersonList same_age_persons
from %oql{select x from Person x

where x.age =
this.age; %};

This construct means that the same age persons
attribute is assigned to the evaluation of the OQL
statement select x from Person x where
x.age = this.age where this denotes the
corresponding database object. For instance, if the age
of the database person object is 32 , the executed OQL
statement select x from Person x where
x.age = 32 will return the list of persons in the
database whose age is equal to 32 , including of
course, the calling person; this returned list will be
bound onto the attribute same age persons .

Contrary to the mapping from an attribute, such
an attribute is not updatable for two reasons:

• this attribute is readonly . Although this rea-
son is sufficient to forbid the update, this is not
the structural reason.

• the structural reason is that this attribute is
mapped from an arbitrary OQL construct (in this
case a select statement) and the system is not
able to convert automatically any OQL statement
to a “reverse” update statement. Furthermore,
even if it will be able, the update of all the person
instances in the list is perharps not wanted.

To allow the user to update the same age persons
attribute, one has to give explicitely the OQL construct
for update in the IMDL. For example:

map attribute
PersonList same_age_persons



from // the get OQL construct:
%oql{ select x from Person x where

x.age = this.age; %}
: // token delimiter
// the set OQL construct:
%oql{ for (x in

(select x from Person x
where x.age = this.age))

x.age := same_age_persons; %}

Note that the IMS does not perform any semantic con-
trol of the update function: you can do whatever you
want in the update function.

3. mapping from a C++ expression:

map boolean is_he_rich() from
expr("return salary() > 10000");

This construct means that the is he rich() method
is assigned to the evaluation of the C++ expression
salary() > 10000 Note that the function call
salary() returns the salary attribute value of the
calling instance. So, if the salary attribute value is
greater than 10000 , the calling instance is said to be
a rich person instance, and poor otherwise.

The euro salary is an attribute mapped from
a C++ expression: it is an updatable attribute as a C++
expression for update has been explicitely given in the
IMDL as follows:

map attribute euro_salary from
// get C++ expression
expr("salary() / 6.55957")
:
// set C++ expression
expr("salary(euro_salary * 6.55957)");

The euro salary attribute is mapped
from the evaluation of the C++ expression
salary() / 6.55957 for reading and from
salary(euro salary * 6.55957) for writ-
ing.

4.2.2 The generated IDL

The complete generated IDL is as follows (forward decla-
ration are skipped):

#include <eyedb/corba/eyedb.idl>

module People {
typedef sequence<People::Car>

CarList;
typedef sequence<People::Person>

PersonList;
typedef sequence<People::Address>

AddressList;
typedef sequence<People::Employee>

EmployeeList;

enum CivilState {
Lady,
Sir,
Miss

};

interface Address : EyeDB_ORB::idbStruct {
attribute string town;

};

interface Person : EyeDB_ORB::idbStruct {
attribute string lastname;
attribute long how_old_is_he;
attribute string spname;
attribute People::Address addr;
attribute People::Person spouse;
attribute People::CarList cars;
readonly attribute

People::PersonList same_age_persons;
};

interface Car : EyeDB_ORB::idbStruct {
attribute string brand;
attribute long num;

};

interface Employee : People::Person {
attribute People::CivilState cstate;
attribute People::PersonList children;
attribute long salary;
attribute euro_salary;
boolean is_he_rich();

};

interface Factory {

People::Address AddressQueryFirst
(in EyeDB_ORB::idbDatabase db,
in string query);

People::AddressList AddressQuery
(in EyeDB_ORB::idbDatabase db,
in string query);

People::Address asAddress
(in EyeDB_ORB::idbObject o);

People::Address AddressCreate
(in EyeDB_ORB::idbDatabase db);

// similar methods for Person,
// Car and Employee

};
};



This generated IDL calls for a few remarks:

1. as previously introduced, the generated IDL in-
cludes by default the file eyedb.idl which con-
tains the generic interface of EYEDB. Each gener-
ated interface inherits directly or indirectly from the
EyeDB ORB::idbObject interface.

2. by default, an interface factory is generated which con-
tains a few methods for each generated interface:

(a) the method Address
AddressQueryFirst(db,
query) returns the first Address instance
which matches the input OQL query argument.

(b) the method AddressList
AddressQuery(db,
query) returns all the instances of Address
which matches the input OQL query argument.

(c) the method Address asAddress(
EyeDB ORB::idbObject o) builds an
Address instance from a generic idbObject
instance if and only if the generic instance is of
dynanic type Address . Otherwise a null object
is returned.

(d) the method Address AddressCreate(db)
creates an empty runtime Address instance.

4.2.3 Using the generated CORBA view

To use the CORBA view, the user must:

1. generate the CORBA view by giving the database
schema and the IMDL construct to the IMS compiler.

2. generate the CORBA stubs and skeleton by giving the
generated IDL to the ORB IDL compiler,

3. compile all the generated code,

4. write and compile the client programs.

Here is a simple example of a client program to get, display
and update all the instances of the class Employee :

// making a OQL query
EyeDB_ORB::idbObjectSeq_var obj_seq =
db->queryObjects("select Employee");

for (int i = 0; i < obj_seq->length(); i++) {
// building an IDL SpecialEmployee from
// an ODL Employee
People::Employee_var empl =

person_factory->asEmployee(obj_seq[i]);
// displaying Employee attributes

cout << "Employee #" << i << endl;

cout << "\tname = ’" << empl->lastname()
<< "’;\n";

// making this Employee rich
while (!empl->is_he_rich())
empl->salary(empl->salary() + 100)

cout << "\tsalary = " << empl->salary()
<< ";\n";

cout << "\teuro_salary = " <<
empl->euro_salary()

<< ";\n";
// incrementing his age
empl->age(empl->age() + 1);
cout << "\tage = " << empl->age()

<< ";\n";
}

And to create an instance of Person and store it in the
database:

// creating a Person instance
People::Person_var p =

person_factory->PersonCreate(db);

// setting the person lastname
p->lastname("martin");

// setting martin’s age
p->how_old_is_he(32);

// storing martin into the database
p->store();

5. Related work and approaches

There have been other proposals for view support in the
context of OODBMS [1, 21, 22, 3].

The O2 approach [1] is based on the concept of vir-
tual class: a virtual class is populated with objets selected
through a query in the OQL language on the root class
extension. Part of the information visible in the original
base class may be hidden in the view and some renaming
may also take place. Furthermore, virtual attributes, defined
by OQL constructs, may be added to the view. This view
mechanism (O2 Views) is based on the query language -
at least to define the extension of the virtual class - and on
a specific view language to add virtual attributes, hide or
rename attributes in the original base class. A mechanism
for updating views in OODBMS, implemented on top of
O2 Views, is exposed in [3].

Another view approach, implemented on top of the
COCOON model, is presented in [22] and [21]: contrary to
the O2 Views approach, this view system uses the standard
way of defining views by nothing else than query language
expressions.



In those both approaches, as in the traditionnal RDBMS
view approach and contrary to our approach, the view
gathers “production” and “filtering” rules:

• the “production” rules, expressed in the query lan-
guage, are used to select objets from one or several
classes.

• the “filtering” rules are used to filter objets by, for in-
stance, adding virtual attributes, hiding or renaming at-
tributes in the original base class. The filtering rules
are expressed in the query language or in a specific
language depending on the system.

In our approach, the production rules are separated from
the filtering rules: the production rules “reside” in factories
while the filtering rules “reside” in the view interface. The
production mechanism is orthogonal to the filtering (or
view) mechanism: one produces an object using a factory
and then one applies the filter (view) to this object, keeping
its original database identifier.
About this point, our approach is conceptually more similar
to aspects [19] which provides mechanisms to extend
existing objects with new state and new behavior while
maintaining the same object identity.

On the other hand, our approach for the update of
views is close to the O2 one described in [3]. In the both
approaches:

• one keeps the original database identifier (OID) in the
“viewed” object: this is the core of the update process.

• some attributes can be straightforwardly updated: O2
allows update of any attribute for which the reverse
mapping method can be automatically derived from
the mapping expression. Our approach allows update
of any attribute mapped from an ODL path expression,
which is, in a certain sense, more restrictive than the
O2 approach.

• the user must supply update methods for other at-
tributes: in our approach, the user must supply an up-
date method for the attributes mapped from an OQL or
a C++ expression.

Lastly, our approach has a structural difference with the pre-
vious ones: our view management is done “outside” the
DBMS, thus, our system is structurally more independent
from the DBMS used than the other systems and it can
be - more or less easily - ported to other DBMS included
relational DBMS. Futhermore, the choice of CORBA as
our view architecture made our “viewed” objects easily and
standardly distributable.

6. Conclusion

We have defined a powerful language, IMDL, and tools
named IMS that enable the distribution of CORBA views
from an OODBMS. As opposed to the traditional RDBMS
views, our approach allows one to customize with flexibility
the CORBA views, and to offer several different views or to
map a database schema onto a pre-existing IDL definition.
Another important improvement on traditional views lies in
a mechanism that enables an update access to the objects
mapped in the view.

The IMDL language and IMS service were used at In-
fobiogen to develop a standard interface to a database of
human genome maps: HuGeMap [8, 6]. This database
was built with the EyeDB OODBMS. A common IDL for
genome maps was defined as a consensus by the genome
community [7] and HuGeMap had to offer a CORBA view
implementing this IDL. This target IDL consists of 19 in-
terfaces that were mapped to the database schema in a 170
line IMDL file. The resulting generated implementation of
the CORBA server contains about 1,500 lines of code. Only
two man-days were spent to implement this CORBA view
using the IMDL language and IMS compiler. Without this
tool, the realization of such an implementation is estimated
to take about two man-weeks.

IMS was implemented for the EYEDB OODBMS and
the Orbix and Orbacus ORBs. But IMDL is a language
that does not depend on the ORB or on the DBMS. The
concepts and the language presented here can be used with
any ORB and any DBMS, relational or object-oriented.

We now plan to extend IMDL and IMS to allow for the
definition and implementation of a single and integrated
CORBA view of several databases with different schemas.
This will achieve a real interoperation of multiple databases
with heterogeneous and complementary semantics.

More information on the IMDL language, the Interface
Mapping Services and the EYEDB OODBMS can be found
at the EYEDB home page [27, 30]. This page contains the
full online programming manual, links to related publica-
tions and a trial version for Solaris can be downloaded. The
page http://www.eyedb.com/corba views [29]
encloses material related to this paper: the IMDL gram-
mar, the source schema driven example given in this pa-
per, a target view driven example, the common IDL for
genome maps and the IMDL file used to map the HuGeMap
database to this IDL.

7. Acknowledgements

The Interface Mapping Definition Language (IMDL) and
the Interface Mapping Services (IMS) have been devel-
opped at CRI Infobiogen [25] with funding from the Eu-
ropean Commission (BIO4-CT96-0346).



The EYEDB OODBMS has been developped at Sysra [28]
with partial funding from the Agence National de la Valori-
sation de la Recherche (ANVAR) [5] and the Conseil Re-
gional d’Ile de France [13].

References

[1] S. Abiteboul and A. Bonner. Objects and views. pages 238–
247, 1991.

[2] M. Adiba and C. Collet. Objets et bases de données, le
SGBD O2. Hermès, 1993.

[3] S. Amer-Yahia, P. Breche, and C. S. dos Santos. Object
views and updates.

[4] T. Andrews and all. The ONTOS Object Database. Onto-
logic, Inc, Burlington, Massachusetts, 1989.

[5] ANVAR. L’Anvar, votre partenaire pour l’innovation.
http://www.anvar.fr/, 1998.

[6] E. Barillot. The Hugemap Home Page.
http://www.infobiogen.fr/services/Hugemap/, 1998.

[7] E. Barillot, U. Leser, P. Lijnzaad, C. Cussat-Blanc,
K. Jungfer, F. Guyon, G. Vaysseix, C. Helgesen, and
P. Rodriguez-Tomé. A proposal for a CORBA interface for
genome maps. BIOINFORMATICS, 15, 1999.

[8] E. Barillot, S. Pook, F. Guyon, C. Cussat-Blanc, E. Viara,
and G. Vaysseix. The HuGeMap database: Interconnection
and Visualisation of Human Genome Maps. Nucleic Acids
Research, 27:119–122, 1999.

[9] R. Ben-Natan. CORBA a Guide to Common Object Request
Broker Architecture. Computing McGraw-Hill, 1995.

[10] C. Lamb et al. The objectstore database system. Communi-
cations of the ACM, 34(10), pages 50–63, 1991.

[11] C. G. Cattell and al. Object Database Standard, ODMG 2.0.
Morgan Kaufmann, 1997.

[12] V. Corporation. Versant Corporation.
http://www.versant.com/.

[13] CRIF. Conseil Régional d’Ile de France. http://www.cr-ile-
de-france.fr/, 1998.

[14] H. F. Korth and A. Silberschatz. Database system concepts.
MacGraw-Hill, 1991.

[15] T. J. Mowbray and R. Zahavi. The Essential CORBA. John
Wiley & Sons, Inc., 1995.

[16] Objectivity. Welcome to objectivity.
http://www.objectivity.com/.

[17] OMG. Object Management Group Home Page.
http://www.omg.org/, 1997.

[18] A. L. Pope. The CORBA Reference Guide. Addison Wesley,
1998.

[19] J. Richardson and P. Schwarz. Aspects: Extending objects to
support multiple, independent roles. pages 298–307, 1991.

[20] D. H. Robert Orfali and J. Edwards. The Essential Dis-
tributed Objects, Survival Guide. John Wiley & Sons, Inc.,
1996.

[21] M. H. Scholl, C. Laasch, and M. Tresch. Updatable Views
in Object-Oriented Databases. (566), 1991.

[22] M. H. Scholl and H.-J. Schek. Supporting views in object-
oriented databases. Data Engineering Bulletin, 14(2):43–47,
1991.

[23] J. Siegel. CORBA Fundamentals and Programming. John
Wiley & Sons, Inc., 1996.

[24] P. Software. Data management for the Internet Age.
http://www.poet.com/.

[25] I. Staff. The INFOBIOGEN Home Page.
http://www.infobiogen.fr/, 1998.

[26] M. Stonebraker and J. M. Hellerstein, editors. readings in
database systems. Morgan Kaufmann, 1998.

[27] E. Viara. The EYEDB Home Page. http://www.eyedb.com/,
1998.

[28] E. Viara. The SYSRA Home Page. http://www.sysra.com/,
1998.

[29] E. Viara. Material for the article Distributing CORBA Views
from an OODBMS. http://www.eyedb.com/corba views/,
2001.

[30] E. Viara, E. Barillot, and G. Vaysseix. The EYEDB
OODBMS. IEEE publications, 1999. Interna-
tional Database Engineering and Applications Symposium
(IDEAS), Montreal, 2-4 August 1999.


